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Summary

In this project we study hyperbolic partial differential equations (PDEs) with boundary
conditions driven by switched differential algebraic equations (DAEs). This class of
systems is motivated by models of the human circulatory system. The flow of blood in
the vessels is described by a hyperbolic PDE, its connection to the heart is represented
by boundary conditions. The dynamics of the heart can be modeled by a combination
of ordinary differential equations and algebraic constraints. The corresponding choice
depends on the state of the valves (e.g. when the valves are closed the flow is zero) which
results in a switched DAE model. Due to the possible change of algebraic constraints
at switching instants, solutions of switched DAEs exhibit jumps. Additionally, solutions
may also contain Dirac impulses or their derivatives. The coupling of these discontinuities
and Dirac- impulses with PDEs needs a rigorous solution theory and novel numerical
schemes. Furthermore, the developed high order numerical methods will allow for more
accurate simulations of the blood flow taking rigorously into account discontinuous and
impulsive effects.
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Project description

1 State of the art and preliminary work

Motivation & Introduction

The human circulatory system has been subject to research since its discovery and many
models have been developed to describe the flow of blood in the human body. With
the ability of numerical simulations the complexity of such models increases constantly.
Current representations consists of a hierarchy of 3D- ,1D- and 0D-descriptions [21].
Points of special interest are resolved in full detail by 3D-models, the main part of the
circulatory network is treated with coupled 1D equations and often the large number
of capillaries is represented by ODEs. Furthermore special components such as the
ventricles of the heart or the venous valves can be described as a combination of ODEs
and algebraic constraints.

In the human heart four valves help to establish the required blood pressure. In
simplified models the flow through these valves follows an ODE driven by the local
pressure gradient. But if the gradient points into the direction opposite to the desired
orientation of the flow, the valve is closed and the flow is forced to be zero [11, 29, 23]. If
the valves are closed the pressure build up is solely described by ODEs for the volumes
of the four ventricles. This combination of ODEs and algebraic constraints leads to
a description via differential-algebraic equations; furthermore the sudden qualitative
changes of the description can be formulated in the switched systems framework. Thus
the novel modeling framework of switched DAEs [26] is suitable for describing these
switching processes in the dynamics of the heart. At the in- and outflow ends of the
heart this switched DAE is coupled to the beginning or end points of arteries and veins,
which can be modeled with 1D hyperbolic partial differential equations.

Such a coupling can be written in a mathematical framework as a coupled system of
the following form

∂tu(t, x) + ∂xf(u(t, x)) = g(u(t, x)), x> 0,
b (u (t, 0+)) = B (t, w(t)) ,
Dσ(t,w)ẇ(t) = Fσ(t,w) (t, u (t, 0+) , w(t)) .

t ≥ 0, (1)

For the modeling of the blood flow, u(t, x) describes the states in all the connected
vessels, which is governed by a hyperbolic balance law (PDE). The function t 7→ w(t)
contains the information of the four ventricles and the flow through their corresponding
valves. The flux of w directly depends on the values of u at the boundary of the PDE-
domain. There the information of w is partially assigned to u via boundary conditions
(BC) given by the functions b and B. A schematic illustration of this coupling is given
in the diagram (Figure 1).

PDE(u)
BC(u,w)

u

swDAE(w)
input u

w

Figure 1: Coupling of a PDE with a switched DAE via boundary condition.
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Applications for systems of the above structure are not restricted to the heart. A
further occurrence of switched DAEs in the human circulatory system are the so called
venous valves [13, 30]. These valves in the veins prevent the blood from flowing down-
wards if the person stands in an upright position and help in the transport of blood back
to the heart.

Models of the type (1) also arise in the context of gas- or water-networks. Here valves
and pumps can be operated externally, which can lead to a switching of differential and
algebraic equations. Furthermore it is sometimes of interest to alter the level of detail
in the modeling of the connected pipes [2]. If such a switching is between algebraic
equations and ODEs it also can fit in the above framework.

State of the art

Although systems of the type (1) are used in different applications, they have not been
subject to rigorous analytical investigations. Therefore especially considerations like
the well-posedness of the coupled system remain as open questions. One of the major
objective of the proposed project is to close this gap. The expertise of the two PIs in
coupling of PDEs with ODEs on the one hand and a distributional solution theory of
switched DAEs on the other hand (detailed in the following) perfectly complement each
other to resolve the mathematical challenges posed by the system class given by (1).

Coupling PDEs with ODEs

A simplified version of (1) can be studied, if a hyperbolic balance law is coupled with
an ODE. In this case the system of coupled equations read as

∂tu(t, x) + ∂xf(u(t, x)) = g(u(t, x)), x> 0,
b (u (t, 0+)) = B (t, w(t)) ,
ẇ(t) = F (t, u (t, 0+) , w(t)) ,

t ≥ 0, (2)

where u(t, x) ∈ Ω ⊆ Rn. The corresponding schematic representation is shown in Fig-
ure 2.

PDE(u)
BC(u,w)

u

ODE(w)
input u

w

Figure 2: Coupling of a PDE with an ODE via boundary condition.

This system (2) has been subject to detailed investigations of the first PI. These
include a detailed analysis of the coupled equations [4, 5] as well as the design of highly
accurate numerical schemes [6, 7].

In [4, 5] it was shown that under certain assumptions and with appropriate initial
conditions the problem (2) is well posed. For the hyperbolic flux function f and the
source term g no special features are required, except that the speeds of the internal
waves, i.e. the eigenvalues of the Jacobian of f , have to be non characteristic w.r.t. the
boundary, i.e. |λi| ≥ c > 0, i = 1, . . . , n. The correct number of boundary conditions `,
if b ∈ C1(Ω;R`), coincides with the number of waves which can enter the domain. This
is a classical requirement for boundary values of hyperbolic conservation laws.
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Regarding the ODE, the function F : R+ × Ω × Rm −→ Rm has to be Lipschitz-
continuous w.r.t. both variables w and u and Lebesgue measurable w.r.t. t. Furthermore,
it has to be bounded in the following way:

(F) There exists a function C ∈ L1
loc(R+;R+) such that for all t > 0, u ∈ Ω and w ∈ Rm

‖F (t, u, w)‖Rm ≤ C(t) (1 + ‖w‖Rm) .

Finally the function B ∈ C1(R+×Rm;Rn−`) assigning the values of w to the boundary
of the PDE is locally Lipschitz in both variables. With these assumptions there exists
locally in time a unique solution to the coupled problem (2). This solution depends
Lipschitz continuously on the initial data for u and w.

Due to the mild assumption on F this result already allows for a piecewise-constant
dependence on t, i.e. w may be governed by a time-dependent switched ODE. However,
discontinuities in the solution w are not allowed and this continuity-requirement is too
restrictive for the applications we want to study.

Analysis considering measure valued solutions for hyperbolic conservation laws can be
found e.g. in [16, 12]. But these do not consider boundary values coupled to ODEs or
even switched DAEs.

Switched DAEs

Switched DAEs are a novel modeling framework to describe dynamics governed by a
a combination of ODEs and algebraic constraints in the presence of sudden structural
changes (switches). This modeling framework for the linear case was proposed by the
second PI in his PhD-thesis [24] and lead to numerous novel results in the area of
mathematical systems theory (including two successful DFG-proposals). A key feature
of switched DAEs is the presence of jumps or even Dirac-impulses in the solution. As
an illustration consider the following simple academic example:

for t in [0, 1): for t in [1, 2):[
1 0
0 0

]
ẇ =

[
0 1
0 1

]
w +

[
0
1

]
u

[
1 0
0 0

]
ẇ =

[
0 1
1 0

]
+

[
0
0

]
u

Under the assumption that u is constant, an ad hoc analysis of this switched DAE
reveals the following properties: On the interval [0, 1) we have w2(t) = −u and from
ẇ1 = w2 it follows that w1(t) = w1(0) − t · u; on the open interval (1, 2) we have
w1(t) = 0. In particular, w1 has a jump at the switching time t = 1 (unless w1(0) = u).
Furthermore, the relationship ẇ1 = w2 holds for all times, this means that w2 has to be
the derivative of a discontinuous function. This is only possible if the solution space is
enlarged to the space of distributions (generalized functions) in the sense of Schwartz [20].
This introduces some technical problems, but these can be resolved by introducing the
space of piecewise-smooth distributions [25]. In this solution space, the above switched
DAE has a unique solution where w2 contains a Dirac impulse at the switching time
t = 1. It should be noted that the above example is actually based on the model of a
simple electrical circuit composed of an inductor in series with a switch and a voltage
source (c.f. [26, Example 6.1.1]), which indeed produces a voltage spark when the switch
is opened , hence the presence of the Dirac impulse is not just a mathematical artifact.

So far a rigorous solution theory for switched DAEs is only available for the linear
case with time-dependent switching. An extension to the nonlinear case in the context
of stability theory are presented in [18], but the presence of Dirac-impulses is excluded.
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State-dependent switching for switched DAEs has not been considered so far, however
there is a strong similarity to the framework of complementarity systems [28, 14, 9, 1]
and some preliminary results concerning the equivalence of the induced jump maps are
presented in [10].

Numerical methods

In many numerical simulations of blood flow switched DAEs for valves are only con-
sidered in combination with pure ODE models [22]. Only a few realizations consider
a coupling of hyperbolic conservation laws with ODEs and algebraic equations for the
heart e.g. [19, 17]. These ad hoc couplings work for the considered numerical test cases,
but no mathematically rigorous investigation of the coupling is performed. For the ve-
nous valves the coupling might be even more complex, since the venous blood flow itself
is much more challenging compared to its aterial counterpart [19].

The coupling of hyperbolic PDEs and ODEs has been subject to intensive research
of the first PI [8, 6, 7]. Note that a simple splitting of the PDE and the ODE can not
guarantee desired properties of balance laws, e.g. the conservation of mass. Therefore
both components of the system have to be solved simultaneously, i.e. the update of the
ODE has to be incorporated into the treatment of the boundary values of the PDE [8].
For higher order schemes further techniques have to be considered in order to achieve
the desired accuracy in the complete system [6, 7]. Here the switching in the DAE has
to be handled with additional care.

Modeling valves for blood flow simulations

There exists a variety of possible models describing the flow passing valves in human
circulatory system. The most detailed ones include a 3D fluid-structure interaction
e.g. [15]. Many simplified models describing the human blood flow use an analogy to
electrical circuits [11, 29, 23, 30]. In this context the four valves in the heart, as well
as the venous valves, are represented as diodes. If a valve is open the flow through the
valves is governed by an ODE depending on the pressure gradient of the two connected
volumes. If the pressure gradient points into the direction opposite to the intended flow,
the valve closes. The closing is described by switching to an algebraic constraint forcing
the flow to zero.

There exist further alternative modeling approaches, e.g. by means of time-varying
drag coefficients [31] or tracking for each valve a nominal leaflet opening angle which is
governed by an ODE. Both approaches can not significantly improve the modeling and
introduce further complications.

2 Objectives and work programme

2.1 Objectives

Objective 1: Solution theory for the coupled system (1) (Area 1 of SPP 1962)

The major goal of the proposed project is establishing an analytical foundation for
coupled systems of the form (1). This overall goal is divided into partial objectives as
follows.

Objective 1a: Distributional solution theory for linear case

Although the linear uncoupled case is well understood for each the PDE and the switched
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DAE, the combination of both introduces some new challenges. A first goal of the pro-
posed project is therefore the development of a rigorous solution theory of the linear
version of (1) with special emphasis on distributional solutions. Explicit solution formu-
las shall be derived. This simplest model already captures important features of blood
flow models as well as other applications like water networks.

Objective 1b: Solution theory for linear switched DAE coupled with nonlinear PDE

The linear solution theory shall be extended to the coupled system (1) with linear
switched DAE but nonlinear PDE. This allows for more realistic models of blood flow
coupled with simple impulsive dynamics (governed by a linear switched DAE). Some
conditions on the evolution of Dirac impulses shall be constructed. Another important
application for this case are models of gas networks.

Objective 1c: Solution theory for the fully nonlinear case

Finally, a solution theory for the general coupled system (1) shall be derived. Of special
interest will be the case where only jumps (induced by the nonlinear switched DAE)
enter the PDE via boundary conditions.

Objective 2: Numerical methods and robustness (Area 2 of SPP 1962)

Based on the analytical properties obtained in Objective 1 numerical methods for finding
approximate solutions of the coupled system (1) shall be developed. Special emphasis
will be on higher order schemes which will also be necessary to robustly approximate
Dirac impulses.

Objective 3: Analysis of blood flow models (Area 3 of SPP 1962)

The analysis of the coupled models should provide conditions under which Dirac-free
solutions can appear. This also includes investigations of the robustness of the above
conditions w.r.t. parameters or modeling simplifications.

2.2 Work program incl. proposed research methods

The majority of the objectives shall be achieved by the work of a PhD-student (funded
by the DFG) who will be jointly supervised by both PIs. Furthermore, the project
will be supported by a student assistant, who will contribute to the implementation of
the developed numerical methods and run simulations. The above objectives will be
approached as follows.

Objective 1a: Distributional solution theory for linear case

In this part of the project the linear case of (1) will be studied, i.e.

∂tu(t, x) + J∂xu(t, x) = g u(t, x), x > 0,

b u(t, 0+) = Bw(t),

Dσ(t)ẇ(t) = Fσ(t)w(t) +Gσ(t)u(t, 0+),

t ≥ 0, (3)

where σ : [0,∞) → {1, 2, . . . , p} is the time-varying switching signal and J , g, b, B,
D1, . . . Dp, F1, . . . , Fp, G1, . . . , Gp are given matrices of appropriate size. As was estab-
lished by the research of the second PI, classical solutions of the switched DAE cannot
be expected and w must be viewed as an element of the space of piecewise-smooth
distributions, which consists of distributions which can be expressed as the sum of a
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piecewise-smooth function and Dirac-impulses (and their derivatives). This space is
closed under differentiation and a (non-commutative multiplication) is well defined. For
coupling with the PDE it is necessary that the variable u is of a compatible type, i.e.
measure valued solutions with piecewise-smooth distributions at the boundary have to
be defined. Since certain DAEs may even produce derivatives of Dirac impulses in the
solution, considering only measured valued solutions may not be sufficient as these only
allow for the occurrence of Dirac impulses, but not their derivatives. Once the underlying
solution space is specified, the coupled system can be analyzed with respect to solvabil-
ity. Since for the uncoupled PDE and switched DAE explicit solution formulas exist, we
aim at deriving explicit solution formulas for the coupled system. These solutions will
in general contain jumps and Dirac impulses. Since Dirac impulses can be interpreted
as infinite peaks, it may be desirable to find conditions such that these infinite peaks do
not occur in the solutions (at least in some parts thereof); the same is true for certain
jumps. The complete understanding of the nature of Dirac-impulses and jumps is also
important for developing robust numerical methods later.

It is well known (see e.g. the survey [27]) that for existence and uniqueness of solutions
for DAEs the involved matrix pairs must be regular. In the coupled situation (3) this
regularity assumption may be too restrictive or not realistic and therefore singular DAEs
have to studied as well. Here the quasi-Kronecker form derived by the second PI [3] may
be utilized.

An important extension of (3) is allowing for state-depending switching signals (t, w) 7→
σ(t, w) instead of just time-depending switching signals. This introduces a mild non-
linearity to the system description. The underlying solution space remains the same,
however, a complete solution theory even for the individual switched DAE is not avail-
able yet. Nevertheless, the linear methods for analyzing the coupled systems are expected
to be similar to the ones used in the time-dependent switching case and conditions for
solvability will be derived.

Objective 1b: Solution theory for linear switched DAE coupled with nonlinear PDE

The change from linear to nonlinear hyperbolic PDEs makes the structure of the solutions
much more complex. Especially the notion of entropy-admissibility has to be introduced
to single out multiple solutions. Since in [5] the solutions are based on u being of bounded
variation, the occurrence of Dirac impulses in u (induced by Dirac impulses in w) are
excluded. In fact, note that in this case even jumps in w are excluded. We therefore
will extend the techniques used in [5] to first allow for discontinuities in w and secondly
to combine them with approaches which allow for Dirac impulses in u. The first case
is relevant, when the switched DAE is impulse free, for which simple algebraic test are
available. Allowing Dirac impulses in a nonlinear context poses some challenges, because
the evaluation of a nonlinear function of a Dirac impulse is not well defined in general
(e.g. what is the sine of the Dirac delta?). However recent research of the second PI
indicates that for bounded nonlinear functions an evaluation of Dirac impulses is indeed
well defined (in fact sin(δ) = sin(0) = 0) and these initial thoughts will be formalized
and used to study the coupling of linear switched DAEs (which are not impulse-free)
with nonlinear PDEs.

Similar as in Objective 1, the case of state-dependent switching will be investigated as
well and it is expected that similar methods as developed in Objective 1 can be applied
to obtain solvability characterizations also for the case of nonlinear PDEs.
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Objective 1c: Solution theory for the fully nonlinear case

The impulse-free solution approach from [18] for nonlinear switched DAEs will be com-
bined with the techniques from [5] in a similar way as in Objective 1b. Allowing for
Dirac impulses also in the nonlinear switched DAE case needs to be investigated and the
above mention observation that the evaluation of bounded nonlinear functions at Dirac
impulses is well defined may be utilized.

Allowing for state-dependent switching presumably will not add significantly new dif-
ficulties and will be handled in a similar fashion as above.

Objective 2: Development of numerical algorithms

The development of simple algorithms for the coupled system will accompany the above
steps. These can help to understand and illustrate the complex coupled behavior.

For the simulation of blood flow highly accurate numerical methods are required.
Therefore we will develop high order methods for the coupled problem, similar to [6, 7].
Since a high order resolution is only possible away from discontinuities, robust methods
have to capture accurately the switching of the DAEs in order to combine high accuracy
and stability. Furthermore we will consider a high order coupling for stiff problems, as
they occur in venous blood flow at the venous valves.

For general systems of type (1), the Dirac impulses can not be represented exactly
and pose extreme challenges onto classical schemes. Here high order methods will help
to resolve sufficiently the underlying dynamics.

Objective 3: Analysis of blood flow models

In blood flow models strong jumps or even Dirac impulses may not be desired. Therefore
we will analyze if such peaked solution might occur in different models investigated in
Objective 1. If possible, we aim to provide precise conditions and identify parameters
for which the states in the coupled system remain bounded. In the case of linear systems
analytical constraints seem to be reachable, whereas for complex nonlinear systems this
likely will be investigated on a numerical level.

3 Bibliography

[1] V. Acary, B. Brogliato, and D. Goeleven. Higher order Moreau’s sweeping process: mathe-
matical formulation and numerical simulation. Mathematical Programming, 113(1):133–217,
2008.

[2] P. Bales, O. Kolb, and J. Lang. Hierarchical modelling and model adaptivity for gas flow on
networks. In G. Allen, J. Nabrzyski, E. Seidel, G. van Albada, J. Dongarra, and P. Sloot,
editors, Computational Science – ICCS 2009, volume 5544 of Lecture Notes in Computer
Science, pages 337–346. Springer Berlin Heidelberg, 2009.

[3] T. Berger and S. Trenn. The quasi-Kronecker form for matrix pencils. SIAM J. Matrix
Anal. & Appl., 33(2):336–368, 2012.

[4] R. Borsche, R. M. Colombo, and M. Garavello. On the coupling of systems of hyperbolic
conservation laws with ordinary differential equations. Nonlinearity, 23(11):2749, 2010.

[5] R. Borsche, R. M. Colombo, and M. Garavello. Mixed systems: ODEs – balance laws.
Journal of Differential Equations, 252(3):2311–2338, 2012.

[6] R. Borsche and J. Kall. ADER schemes and high order coupling on networks of hyperbolic
conservation laws. J. Comput. Phys., 273:658–670, 2014.

8



[7] R. Borsche and J. Kall. High order numerical methods for networks of hyperbolic conser-
vation laws coupled with odes and lumped parameter models. submitted for publication,
http://arxiv.org/abs/1507.07772, 2015.

[8] R. Borsche and A. Klar. Flooding in urban drainage systems: coupling hyperbolic con-
servation laws for sewer systems and surface flow. Internat. J. Numer. Methods Fluids,
76(11):789–810, 2014.
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