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Zusammenfassung

Das mehrschichtige Perzeptron (MLP) ist ein künstliches neuronales Netzwerk, das oft

als allgemeiner Funktionsapproximierer genutzt wird. In dieser Diplomarbeit werden

die theoretischen Fähigkeiten und Beschränkungen eines MLPs als Funktionsapproxi-

mator untersucht. Das wichtigste Resultat ist die explizite Berechnung der notwendigen

Größe eines MLPs, um eine gegebene Approximationsordnung zu erreichen, d.h., dass

die Taylorpolynome des entsprechenden Grades übereinstimmen. Außerdem wird die

Beziehung zwischen der Approximationsordnung und der Approximationsgüte unter-

sucht und es werden Bedingungen für MLPs gegeben, für die eine höhere Approxima-

tionsordnung äquivalent zu einer höheren Approximationsgüte ist. Simulationen geben

einen ersten Eindruck von der praktischen Relevanz der theoretischen Resultate.

Abstract

The multilayer perceptron (MLP) is an artificial neural network which is widely used

as a general function approximator. In this diploma thesis the theoretical capabilities

and limits of an MLP as function approximator are studied. The main result is the

explicit calculation of the necessary size for an MLP to achieve a given approximation

order, i.e. the Taylor polynomials of the corresponding degree coincide. Furthermore,

the relation between approximation order and approximation accuracy is studied and

conditions for MLPs are given for which a higher approximation order is equivalent to

a higher approximation accuracy. Simulations give a first impression of the practical

relevance of the theoretical results.
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Thesen

• Künstliche neuronale Netze sind Modelle biologischer neuronaler Netze und wer-

den erfolgreich für Anwendungen eingesetzt, in denen Adaptivität und Generali-

sierungsfähigkeit notwendig ist.

• Das mehrschichtige Perzeptron (MLP) ist ein populäres künstliches neuronales

Netzwerk, da es einfach aufgebaut ist und durch den Backpropagation-Algorith-

mus trainiert werden kann.

• Ein MLP ist in der Lage jede stetige Funktion beliebig genau zu approximieren,

wenn es keine Größenbeschränkung für das MLP gibt.

• In praktischen Anwendungen ist die Größe eines MLPs immer beschränkt und es

ist wichtig zu wissen, wie die eingeschränkte Größe eines MLPs die theoretisch

mögliche Approximationsgüte beeinflusst.

• In einigen Anwendungen ist die Approximationsordnung wichtiger als die globale

Approximationsgüte, weil nur die lokale Genauigkeit relevant ist.

• Unter bestimmten Bedingungen sind Approximationsordnung und Approximati-

onsgüte äquivalent.

• Es ist möglich, die Größe eines MLPs explizit zu bestimmen, welche

notwendig ist, um eine gegebene Approximationsordnung zu erreichen.

• Insbesondere kann entschieden werden, wie viele Schichten ein MLP haben muss.
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Theses

• Artificial neural networks are models of biological neural networks and are suc-

cessfully used for applications where adaptivity and generalization capability is

necessary.

• The multilayer perceptron (MLP) is a popular artificial neural network, because

it is simple and can be trained with the back-propagation algorithm.

• An MLP is capable of approximating any continuous function arbitrarily well if

no restriction on the size of the MLP is made.

• In practical applications the size of an MLP is always bounded and it is important

to know how the restricted size of an MLP influences the theoretically possible

approximation accuracy.

• In some applications the approximation order is more important than the overall

approximation accuracy, because only the local accuracy is relevant.

• Under certain conditions approximation order and approximation accuracy are

equivalent.

• It is possible to explicitly determine the size of an MLP which is nec-

essary to achieve a given approximation order.

• In particular, it can be decided how many layers an MLP needs to have.
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1 Introduction

The original motivation for artificial neural networks (ANNs) was the aim to model

cognitive processes observed in animals and humans. Many applications of ANNs show

that this approach was very useful, although it also became clear that some problems

can not be solved with ANNs or could be solved better with other approaches. There

are nowadays lots of different types of ANNs and the connection to biological neural

networks is very loose, if there is any at all. For a comprehensive overview over different

kinds of neural networks, the interested reader is referred to [Haykin 1994], where also

the biological background and historical remarks are given. In this diploma thesis only

the multilayer perceptron (MLP) is studied, which is very popular in the application

area as well as in theoretical research. The reasons for this popularity might be

• its simplicity,

• its scalability,

• its property to be a general function approximator,

• and its adaptivity.

The MLP was primarily used for classification problems, but its capability to approxi-

mate functions made it also interesting for other applications. One of this applications

is modelling and control, where artificial neural networks, in particular MLPs, are suc-

cessfully used (see, e.g., [Nørgaard, Ravn, Poulsen & Hansen 2000]). From an abstract

point of view, modelling and (open loop) control with ANNs are very similar. In both

cases the ANN should approximate a function, in the first case the function which

represents the system which should be modelled and in the second case the function of

the inverse system which then can be used as a controller, see [Nørgaard et al. 2000]

for more details. When using ANNs in application, there are two main questions:

(i) Is it theoretically possible to solve the task with the considered class of ANNs?

(ii) How can one find an ANN which solves the task?

In general, ANNs are scalable, i.e. they can have different sizes, and they are adaptive,

i.e. they have parameters which can be changed. In most cases, the structure and size

of an ANN are chosen a priori and afterwards the ANN “learns” a given task, which

2006-10-04/115/IN00/2211 1
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is nothing more than adjusting the parameters in a certain way. Therefore, the first

question deals with the structure and size of the ANN and the second question targets

the change of the parameters, i.e. the learning procedure.

The first question is strongly connected to two other questions:

• What size or structure is necessary to solve a given task?

• What size or structure is sufficient to solve a given task?

This diploma thesis gives an answer to the first of the above two questions for a specific

task.

It is an important question whether the necessary size is also sufficient, but an answer

to this question is not in the scope of this diploma thesis. The question how to learn

an ANN is also not in the scope of this diploma thesis.

The task which is considered here is to approximate any function, which is suffi-

ciently smooth, with a given approximation order. One function approximates another

function with a specific order if the function value and all derivatives up to the spe-

cific order coincide at one fixed point, i.e. the Taylor polynomials are the same (see

Figure 1).

x

y

x

y

x

y

Figure 1: Left and right: Two functions with the same Taylor polynomial of degree five (dashed
line), Middle: Both function approximate each other with approximation order five.

This kind of approximation plays an important role in control theory, where of-

ten a steady-state is considered and it is important that in a neighbourhood of this

steady-state the function which approximates the system or the controller is very accu-

rate. On the other hand, the accuracy far away from the steady-state does not play an

important role. The question which will be answered in this diploma thesis is therefore:
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Which size and structure is necessary for an MLP to approximate any sufficiently

smooth function with a given approximation order?

It is important to highlight here that the size and structure of the MLP should only

depend on the given order and not on the specific function which should be learned.

This is in contrast to results in [Barron 1994], where the approximation accuracy de-

pends on the specific function which should be approximated. Some results more in the

spirit of this diploma thesis are given in [Pinkus 1999], but the bounds of the approxi-

mation accuracy could not be used to exactly calculate the necessary size of an MLP,

due to unspecified constants in the formulas. The FAQs (frequently asked questions)

of the newsgroup comp.ai.neural-nets also considers this question and states “In

most situations, there is no way to determine the best number of hidden units without

training several networks and estimating the generalization error of each.” [Sarle 2002].

The diploma thesis is structured as follows. In the second section, the multilayer

perceptron (MLP) and its notation is introduced. The third section studies the general

properties of the MLP. One important result is that MLPs are capable of approximating

any continuous function arbitrarily well, but to achieve this accuracy an arbitrarily big

size of the MLP might be necessary. For the approximation order Taylor polynomials

play an important role, hence the theory behind Taylor polynomials is elaborated in

Section 4. One main result of this section is the correspondence between approximation

accuracy and approximation order (Theorem 4.5.1). This result is then used to give

conditions for an MLP for which a high approximation order is equivalent to a high

approximation accuracy. It turns out that the standard sigmoid activation function of

an MLP does not fulfill these conditions, therefore other activation function candidates

are proposed.

The main part of this diploma thesis is Section 5, where as the main result Theo-

rem 5.5.2 gives an explicit formula for the size of an MLP which is necessary to achieve

a given approximation order for all sufficiently smooth functions. In particular, the

number of hidden layers is stated explicitly. The necessary size (i.e. number of units

per hidden layer) is given for a range of input dimensions and approximation orders in

the appendix. To the author’s best knowledge, any explicit results for the necessary

size of an ANN to solve a well defined task are not available yet. There seem to be

only heuristics and rules of thumb or asymptotic results in the literature.
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Finally, some numerical simulations are presented, in the first part with the aim to

show how the functions of MLPs are approximated by its own Taylor polynomials for

different activation functions and different network sizes. It is clear that if the MLP

is not approximated well by its own Taylor polynomial, an approximation of arbitrary

functions will in general be worse. In the second part, different MLPs are trained

with the standard back-propagation algorithm (first proposed in [Rumelhart, Hinton

& Williams 1986]). Firstly, different learning pattern distributions are used to show

how this influences the approximation, in particular the approximation order. Secondly,

different MLPs (i.e. different size and different activation functions) are trained to give

an impression how the different activation functions influence the learning performance.

In addition the size of the MLP was chosen much smaller and much bigger than the

necessary size, to illustrate the influence of the size on the approximation accuracy.

In the appendix, some mathematical background is collected, as well as some proofs

which are not essential for the first reading of the diploma thesis.

4 2006-10-04/115/IN00/2211
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2 The multilayer perceptron (MLP)

2.1 Definition of the MLP

The multilayer perceptron (MLP) is a very simple model of biological neural networks

and is based on the principle of a feed-forward-flow of information, i.e. the network

is structured in an hierarchical way. The MLP consists of different layers where the

information flows only from one layer to the next layer. Layers between the input

and output layer are called hidden layers, because the units in the hidden layers (the

hidden units) are “hidden” from the environment, which only interacts with the input

and output units. Note that in the literature, because of the biological background,

instead of the term “unit” also the term “neuron” is used. The overall structure of an

MLP is illustrated in Figure 2.

output layer

last hidden layer

first hidden layer

input layer

Figure 2: Structure of an MLP. The information flows from the bottom to the top and is processed
in each layer by the units in a specific way.

From a theoretical point of view, it is not necessary to consider more than one output

unit because two or more output units could be realized by considering two or more

MLPs in parallel. However, if the outputs are correlated it may be possible to achieve

the same approximation results with fewer hidden units. Nevertheless, a correlation

analysis of different outputs and its implications to the necessary number of hidden

units is beyond the scope of this work.
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The input units play no active role in processing the information flow, because they

just distribute the signals to the units of the first hidden layer. All hidden units work in

an identical way and the output unit is a simpler version of a hidden unit. In an MLP,

each hidden unit transforms the signals from the former layer to one output signal,

which is distributed to the next layer. There are two main features of an MLP:

(i) Every edge between two units has a weight.

(ii) Each hidden unit has an, in general nonlinear, activation function.

The activation function is modulo a translation via an individual bias the same for all

hidden units. The output of a hidden unit is determined by the weighted sum of the

signals from the former layer, which is then transformed by the activation function.

The behaviour of a hidden unit is illustrated in the left part of Figure 3. In the output

unit the activation function is the identity function, its behaviour is illustrated in the

right part of Figure 3. The notation in Figure 3 is explained in the next subsection.

zi,j

σ

+

zi−1,1 zi−1,2 zi−1,ni−1

1θi,j

w
i,
j

1

w
i,
j

2

w i,jn
i−

1

y

+

zh,1 zh,2 zh,nh

w
y

1

w
y 2

w
y
n

h

Figure 3: The behaviour of the j-th unit in the i-th hidden layer (left) and of the output unit
(right).

2.2 Notation

To make the notation clearer an example is considered first (see Figure 4). For con-

6 2006-10-04/115/IN00/2211



S. Trenn: Quantitative analysis of neural networks as universal function approximators

1

1

Figure 4: Example of an MLP

venience, the bias is interpreted as an additional unit whose output equals one. The

specific value of the biases are then the edges’ weights.

The number of hidden layers is denoted by h, for this example h = 2. The number

of units per layer is n = (n0, n1, . . . , nh), where n0 is the number of input units and

ni, i ≥ 1, is the number of units in the i-th hidden layer. Here, n = (2, 3, 2). The

activation function is σ : R → R, and, for the standard MLP, is given by

σ(t) =
1

1 + e−t
.

For the results in this diploma thesis, the specific form of the activation is not relevant

and most results hold true for any activation function with some qualitative properties.

The above parameters of an MLP are in general chosen a priori and are in most cases

not changed while the network is “learning”. In the learning process of an MLP the

variable parameters are adapted in a specific way. These variable parameters, which

consist of the edges’ weights and the biases, are summarized in P. In detail,

P = (W1,W2, . . . ,Wh,wy),

where wy = (wy
1, . . . , w

y
nh

) are the nh weights for the output unit and all weights and

biases for the i-th hidden layer, 1 ≤ i ≤ h, are collected in Wi = (wi,1,wi,2, . . . ,wi,ni).

The component wi,j = (wi,j
1 , wi,j

2 , . . . , wi,j
ni−1

, θi,j), for 1 ≤ i ≤ h and 1 ≤ j ≤ ni,

represents all weights and the bias which belong to the j-th unit in the i-th hidden

layer. For the given example these parameters are

P= (W1,W2,wy),
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W1= (w1,1,w1,2,w1,3),

w1,1= (w1,1
1 , w1,1

2 , θ1,1) ∈ R3,

w1,2= (w1,2
1 , w1,2

2 , θ1,2) ∈ R3,

w1,3= (w1,3
1 , w1,3

2 , θ1,3) ∈ R3,

W2= (w2,1,w2,2),

w2,1= (w2,1
1 , w2,1

2 , w2,1
3 , θ2,1) ∈ R4,

w2,2= (w2,2
1 , w2,2

2 , w2,2
3 , θ2,2) ∈ R4,

wy = (wy
1 , w

y
2) ∈ R2.

Denote the output of the j-th unit in the i-th hidden layer by zi,j and collect all out-

puts of the layer i in the vector zi = (zi,1, . . . , zi,ni, 1), where the last component stands

for the virtual bias unit. The n0-dimensional input of the MLP is x = (x1, x2, . . . , xn0
)

and the output is y. For notational convenience consider the input layer as the zeroth

hidden layer, i.e. z0 = (x1, . . . , xn0
, 1).

Finally the formal definition of an MLP is given:

Definition 2.2.1 (Multilayer Perceptron - MLP). A multilayer perceptron (MLP) is

a quadtuple

(h,n, σ,P),

where h ∈ N is the number of hidden layers, n = (n0, n1, . . . , nh) ∈ Nh+1 is the number

of units per hidden layer (the hidden layer zero is the input layer), σ : R → R is the

activation function and

P = (W1, . . . ,Wh,wy),

where, for i = 1, . . . , h, Wi = (wi,1, . . . ,wi,ni) ∈ (Rni−1+1)ni are the parameters

(weights and biases) between the (i− 1)-th and i-th hidden layer and wy ∈ Rnh are the

parameters between the last hidden layer and the output unit.

2.3 The MLP function

So far, the formal relation between the output y and the inputs x1, x2, . . . , xn0
was

not specified. Consider therefore a fixed MLP (h,n, σ,P), in particular the “variable

parameters” P are fixed. The main idea is to view the MLP as a black box with n0
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inputs and one output. In the former subsection the signal flow and transformation

was already informally described, the formal definition is as follows.

Definition 2.3.1 (MLP function). For an MLP (h,n, σ,P) as in Definition 2.2.1, the

MLP-function

fMLP : Rn0 → R, x = (x1, x2, . . . , xn0
) 7→ y

is recursively defined by

y = wy · zh, where

zh =
(

σ(wh,1 · zh−1) , σ(wh,2 · zh−1) , . . . , σ(wh,nh · zh−1)
)
,

zi =
(

σ(wi,1 · zi−1) , . . . , σ(wi,ni · zi−1) , 1
)

for i = h − 1, . . . , 1,

z0 = (x1, x2, . . . , xn0
, 1).

Note that two MLPs with the same structure but with different parameters P1

and P2 have in general different MLP functions. Indeed, one could consider another

more abstract mapping, which maps each parameter set P to the corresponding MLP

function. Let NMLP(h,n) be the number of parameters in P, where h and n determine

the fixed structure of the MLP, and let map(A → B) be the space of mappings from a

set A to a set B. This abstract mapping is then denoted by

FMLP : RNMLP(h,n) → map(Rn0 → R), P 7→ FMLP[P] = fMLP,

where fMLP is the MLP function of the MLP with the specific parameter set P. Square

brackets are used because FMLP[P] is itself a function. In order to highlight the depen-

dence between the MLP function fMLP and the MLP parameters P it is now possible

to write FMLP[P](x) instead of fMLP(x).
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3 Qualitative properties of the MLP as general

function approximator

This section is mainly based on the survey paper [Pinkus 1999].

3.1 Mathematical preliminaries

From an abstract point of view, approximation deals with a set of objects, say O,

which might be quite complicated, and a subset A ⊂ O, which is easier to handle. The

aim is to find for each complicated object o ∈ O a simpler object a ∈ A, which is in

some sense close to o. As an example consider as the complicated set O = R, the real

numbers, and as the simpler set A = Q, the rational numbers. Clearly it is possible to

find for each real number x ∈ R a rational number q ∈ Q such that |x − q| is small.

To make the term “close to” precise in the general setting, the distance between

two arbitrary objects must be defined. In a mathematical context, the set O must be

assumed to be a metric space (O, d), where d : O × O → R
≥0

is a metric and d(o1, o2)

is the distance between two objects o1, o2 ∈ O. See the appendix for details on metric

spaces. For real numbers, the standard metric is defined as d(x, y) = |x − y| for any

x, y ∈ R, but it is possible to define other metrics, e.g., d(x, y) = |x − y|/(1 + |x − y|)
which only has values in the interval [0, 1).

The following formal definition of denseness plays an important role in approximation

theory.

Definition 3.1.1 (Denseness). Let (O, d) be a metric space and A ⊆ O.

For ε > 0 the set A is called ε-dense in O if, and only if,

∀ o ∈ O ∃ a ∈ A : d(o, a) < ε.

The set A is called dense in O if, and only if, A is ε-dense in O for every ε > 0.

The concept of ε-denseness is particularly relevant for numerical approximations with

computers. Because of the finite machine precision, an arbitrary good approximation

is in most cases not possible or needed. The set of rational numbers as a subset of the

real numbers is a typical example for a dense set.
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An important metric space for this diploma thesis is the set of continuous functions,

denoted by

C(K → R) := { f : K → R | f is continuous } ,

where K ⊆ Rn0 is some compact set (i.e. bounded and closed, see appendix), together

with the metric

d : C(K → R) × C(K → R) → R, (f, g) 7→ d(f, g) := max
x∈K

∣
∣f(x) − g(x)

∣
∣.

Note that this metric space is also a normed space, see the appendix for more details.

The distance between two functions is therefore also denoted by ‖f −g‖ which is equal

to d(f, g).

An important subspace of the continuous functions C(K → R) is the space of polyno-

mials of degree N ∈ N, considered as functions on K ⊆ Rn0 ,

PN(K → R) :=







p : K → R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p(x) =
∑

|I|≤N

aIx
I ,

aI ∈ R for all I ∈ Nn0 with |I| ≤ N

and x = (x1, x2, . . . , xn0
) ∈ K







,

where xI = x1
i1x2

i2 · · ·xn0

in0 for I = (i1, i2, . . . , in0
) ∈ Nn0 and |I| = i1 + i2 + . . . + in0

.

The space of all polynomials is

P(K → R) :=
⋃

N∈N

PN(K → R).

The subsection is finished with interesting density properties of polynomials in relation

to continuous functions.

Proposition 3.1.2 (Denseness of polynomials).

(i) P(K → R) is dense in C(K → R), i.e. for every continuous function f and

every arbitrarily small ε > 0 there exists a polynomial p such that ‖f − p‖ < ε.

(ii) For a fixed degree N ∈ N, the space PN(K → R) is not ε-dense in C(K → R)

for any arbitrarily large ε > 0.

The proposition is proved in the appendix.
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3.2 The general approximation capability of MLPs

MLPs are used to approximate given functions. Even if MLPs are used for classifi-

cation problems, this can be viewed as an approximation of a function, namely the

identification function. Depending on the considered problem, there is a set F of pos-

sible functions, which should be approximated. For example, F = C(Rn0 → R) for

continuous approximation problems or F = map
(
Rn0 → {1, 2, . . . , N}

)
for classifica-

tion problems. The latter can be viewed as an special case of the former by identifying

whole intervals as classes, i.e. each input whose function value lies in a certain interval

belongs to the same class. Functions arising from technical systems can be assumed

to be continuous in most cases. In addition, there often exist physical or other bounds

for the input, hence it is reasonable to consider F = C(K → R), where K ⊆ Rn0 is a

compact subset of the n0-dimensional input space. It is no restriction to assume that

K = [−1, 1]n0 , i.e. the input signals are scaled such that x1, x2, . . . , xn0
∈ [−1, 1].

The approximation capability of an MLP is governed by the space of possible MLP

functions. It is not very fruitful to allow for all possible MLPs, instead it is necessary

to restrict oneself to MLPs with some structural assumption. The following notation

is used:

FMLP
(αh,αn,ασ ,αP)(K → R)

:=







f : K → R

∣
∣
∣
∣
∣
∣
∣
∣

f is the MLP function of an MLP (h,n, σ,P)

with h arbitrary if αh = · or h = αh otherwise,

and likewise for n, σ and P







.

To make this notation clearer, consider the following examples:

• FMLP
(· , · , · , ·)(K → R) is the space of all possible MLP functions with arbitrary acti-

vation functions, number of hidden layers and units, weights and biases.

• FMLP
(1 , · , σ , ·)(K → R) is the space of all MLP functions of MLPs with one hidden

layer and the activation function σ.

• FMLP
(2 , (n0,n1,n2) , σ , ·)(K → R) is the space of all MLP functions of MLPs with the

activation function σ and a fixed structure with two hidden layers and n1 units

in the first hidden layer and n2 units in the second hidden layer.
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• FMLP
(h,n,σ,P)(K → R) consists only of the single MLP function of the MLP (h,n, σ,P).

It is now possible to formulate a first positive result:

Theorem 3.2.1 (Denseness of single hidden layer MLPs). Let σ be continuous and not

a polynomial, then FMLP
(1 , · , σ , ·)(K → R) is dense in C(K → R), i.e. for every continuous

function f : K → R and every arbitrarily small ε > 0 there exists an MLP (1,n, σ,P)

with one hidden layer such that its MLP function fMLP fulfills ‖f − fMLP‖ < ε.

The theorem is proved in the appendix.

One might wonder about the assumption that σ must not be a polynomial. The

reason is that if σ was a polynomial of some finite degree, the MLP function would

be a polynomial of the same degree and hence, by Proposition 3.1.2, denseness is not

possible.

Although this result looks promising it has a huge drawback. The MLP struc-

ture, namely the number of hidden units, depends on the function, which should be

approximated, and on the accuracy ε. It is therefore not possible to conclude from

Theorem 3.2.1 that there exists an MLP with a fixed structure which is able to ap-

proximate all continuous functions with an arbitrary accuracy. The next subsection

considers this question in detail.

3.3 MLPs with a fixed network structure

For implementing neural networks it is important that the structure of an MLP is fixed

(e.g., as an integrated circuit) and only the weight and bias parameters are adapted.

For single hidden layer MLPs there seems to be a negative result.

Conjecture 3.3.1 (Non-ε-denseness of MLPs). FMLP
(1 ,n , σ , ·)(K → R) is not ε-dense in

C(K → R) for every ε > 0 and every fixed number n of hidden units, i.e. for a given

accuracy it is not possible to find an MLP with a fixed structure which can approximate

all continuous function with the given accuracy.

The conjecture is backed up by [Pinkus 2006], but it still seems to be an open

problem.

In view of the above conjecture one might ask if things get better if one considers more

than one hidden layer. Indeed, there is a positive result for two hidden layers.
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Proposition 3.3.2 (Two hidden layers). There exists an activation function σ such

that for n = (n0, 2n0 + 1, 4n0 + 3) the set FMLP
(2 , n , σ , ·)(K → R) is dense in C(K → R),

i.e. there exists a two hidden layers MLP with a fixed structure that can approximate

any continuous function arbitrarily well.

The proposition is proved in the appendix.

Unfortunately, the needed activation function is very complex and can not be imple-

mented in any real MLP and therefore the result is only of theoretical interest.

3.4 Conclusion for approximation with MLPs

For the function space F = C(K → R) it was shown that in general MLPs are capable

of approximating functions in F arbitrarily well. But if one restricts the MLPs to a

fixed structure, which is inevitable for applications, there seems to be no possibility to

achieve good approximation results for F . The problem is that the space of continuous

functions is still too large, a general continuous function can exhibit really strange

behaviour. It can be shown that if differentiability and boundedness of the derivatives

are assumed, then it is possible to achieve ε-boundedness with a fixed MLP structure.

Because the results are very technical and do not allow for a calculation of the necessary

hidden units they are only considered in the appendix.

In the next section, instead of continuous functions, the “nicer” analytical functions

are considered with the aim to obtain quantitative approximation results.
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4 Taylor polynomials and function approximation

4.1 Mathematical preliminaries

In the following, derivatives of functions play an important role, therefore a brief sum-

mary of derivatives in general Banach spaces is given (Banach spaces are complete

normed vector spaces, see the appendix for details). Let X and Y be Banach spaces

and f : X → Y . The derivative Df(x) of f at some point x ∈ X is a continuous linear

function from X to Y , with

lim
h→0

f(x + h) − f(x) − Df(x)(h)

‖h‖ = 0.

Note that Df(x) is itself a function, therefore the notation Df(x)(h) makes sense.

Introducing the notation L(X → Y ) for the space of all continuous linear functions

from X to Y , the derivative of f is

Df : X → L(X → Y ), x 7→ Df(x),

if f is differentiable. Since this viewpoint of derivatives is not very common consider

the following example

f : R2 → R3, (x1, x2) 7→






x1 + x2

x2
1

sin x2




 .

The derivative at the point x = 0 is

Df(0) =






1 1

0 0

0 1




 ∈ R3×2,

and can be viewed as an linear mapping in form of a matrix-vector-multiplication:

Df(0) : R2 → R3, (h1, h2) 7→ Df(0)

(

h1

h2

)

=






1 1

0 0

0 1






(

h1

h2

)

=






h1 + h2

0

h2




 .
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The derivative Df(x) at some arbitrary point x ∈ R2 is

Df(x) =






1 1

2x1 0

0 cos x2




 ∈ R3×2,

which is for every fixed x ∈ R2 a 3×2 matrix, which can be viewed as a linear mapping

from R2 to R3. Note that Df as a function of x ∈ X is in general not linear.

On a first glance the above definition for derivatives seems to collide with the “normal”

derivative of one-dimensional functions f : R → R, because there Df : R → R instead

of Df : R → L(R → R). But it is easy to see that R and L(R → R) can be identified

with each other by interpreting a real number a ∈ R as a 1×1-matrix which, as above,

can be viewed as a linear mapping from R to R.

Things get a bit more complicated if one considers higher derivatives. First observe

that the space Y1 := L(X → Y ) is a Banach space again with the norm

‖L‖ := sup
x∈X\{0}

∥
∥L(x)

∥
∥

‖x‖ (4.1.1)

for any L ∈ L(X → Y ). The above definition of the derivative can now be used to

obtain the second derivative by taking the derivative of Df : X → Y1:

D(Df) : X → L(X → Y1) = L
(
X → L(X → Y )

)
.

Note that L
(
X → L(X → Y )

)
can be interpreted as a subset of map(X2 → Y ).

Clearly this process can now be repeated to obtain higher derivatives. Formally define

D0f := f and Dnf := D(Dn−1f),

Y0 := Y and Yn := L(X → Yn−1).
(4.1.2)

Hence

Dnf : X → Yn,

and in particular Dnf(x) ∈ Yn for every x ∈ X, where Yn can be interpreted as a

subset of map(Xn → Y ). Instead of Dnf the notation f (n) or, if n ≤ 3, f ′, f ′′, and f ′′′,

is also used.
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In this diploma thesis the focus is on functions f : K → R, i.e. X = K ⊆ Rn0 and

Y = R, in this case elements in Y1 can be interpreted as row vectors (the gradient) and

elements in Y2 as matrixes (the Hessian matrix). For higher derivatives the elements

in Yn can be viewed as tensors of rank n.

For x ∈ K and Dnf(x) ∈ Yn, where Yn is interpreted as a subset of map(Xn → Y ),

write

Dnf(x)hn := Dnf(x)(h,h, . . . ,h).

Note that for a fixed x ∈ K

Dnf(x)hn =

n∑

i1,i2,...,in=1

∂nf

∂xi1∂xi2 · · ·∂xin

(x)hi1hi2 · · ·hin ,

i.e. Dnf(x)hn is for a fixed x ∈ K a multivariable polynomial with variables h =

(h1, h2, . . . , hn), which monomials all have degree n.

If Dnf(x) exists for all x ∈ K and Df is a continuous function (in x), then f is

called n-times continuously differentiable on K. The space of all n-times continuously

differentiable functions on K is denoted by Cn(K → R) and the space C∞(K → R)

is the space of arbitrarily often differentiable functions, which are also called smooth

functions.

It is well known that for partial derivatives of continuously differentiable function it

is not important in which order the partial derivatives are calculated. Formally this

can be expressed as (see [Amann & Escher 2001b, Kor. VII.5.3])

Dnf(x) ∈ Ln
sym(K → R),

where Ln
sym(X → Y ) is a subspace of the space Yn as defined in (4.1.2) with the

additional condition that for all L ∈ Ln
sym(X → Y ), for all x1,x2, . . . ,xn ∈ X, and for

all permutations π : {1, 2, . . . , n} → {1, 2, . . . , n}

L(x1,x2, . . . ,xn) = L(xπ(1),xπ(2) . . . ,xπ(n)).

Finally, multivariable power series are considered:

Definition 4.1.1 (Multivariable power series). Let X be a Banach space. A multi-

2006-10-04/115/IN00/2211 19



S. Trenn: Quantitative analysis of neural networks as universal function approximators

variable power series P is defined by

P (x) =

∞∑

k=0

Ak(x,x, . . . ,x
︸ ︷︷ ︸

k times

),

where x ∈ X and Ak ∈ Lk
sym(X → R), k ∈ N, are called coefficients of P

Multivariable power series are needed to study Taylor series in the next section,

where the following important property is used:

Proposition 4.1.2. Let P be a multivariable power series on K = [−1, 1]n0 with

lim sup
k→∞

k
√

‖Ak‖ < 1

for the coefficients Ak ∈ Lk
sym(X → R), k ∈ N. Then P (x) converges absolutely on K

and P is arbitrarily often differentiable at x = 0 with

DnP (0) = n!An,

for all n ∈ N.

The proof is technical and is therefore put in the appendix.

4.2 Taylor polynomials

A geometric interpretation of derivatives is that the derivative at some point is locally

a linear best approximation of the function (see Figure 5), i.e.

f(x) ≈ f(0) + Df(0)(x).

The right hand side is an affine linear function or in other terms a polynomial of degree

one.

An obvious generalization of the geometric approach is to consider also quadratic,

cubic and higher approximations, which yield polynomials of degree two, three or

higher. These polynomials are called Taylor polynomials and the following theorem

holds.
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x

y

f(x)

f(0) + Df(0)(x)

Figure 5: Linear best approximation

Theorem 4.2.1 (Taylor). Let N ∈ N, K = [−1, 1]n0 and f ∈ CN+1(K → R) then

f(x) =

N∑

k=0

Dkf(0)

k!
xk

︸ ︷︷ ︸

TN{f}(x)

+RN+1{f}(x)

where the remainder term RN+1{f}(x) fulfills

|RN+1{f}(x)| ≤ 1

(N + 1)!
max
ξ∈K

|DN+1f(ξ)xN+1|.

This is a standard result in analysis and a proof can for example be found in [Amann

& Escher 2001b, Thm. VII.5.8]. Note that x 7→ TN{f}(x) ∈ PN (K → R), i.e. the

first term is a polynomial of degree N . Under certain conditions, which will be studied

later, the remainder term is negligible and f(x) ≈ TN{f}(x) for all small x ∈ K.

Clearly, TN{f} can also be defined if f is only N times continuously differentiable, but

than the remainder term can not be bounded as in Theorem 4.2.1. To illustrate the

theorem, consider the example f : R → R with f(x) = sin(x). In Figure 6 different

Taylor polynomials are plotted.

The Taylor polynomials for this example are given by

T3{f}(x) = x − 1

3
x3

T9{f}(x) = x − 1

3
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9

T15{f}(x) = T9{f}(x) − 1

39916800
x11 +

1

6227020800
x13 − 1

1307674368000
x15

Note that in this case n0 = 1 and therefore tensors do not appear in the Taylor
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Figure 6: Taylor polynomials (thick lines) for f(x) = sin(x) of degree 3, 9, 15, resp.

polynomial. To show the effect of tensors consider the example

f : R3 → R, x = (x1, x2, x3) 7→ ex1(x2
2 + x3

3).

Writing tensors of rank three as a vector of matrixes and a tensor of rank four as matrix

with matrix-entries, the first four derivatives of f at x = (0, 0, 0) can be written as

Df(0) =
[

0 0 0
]

,

D2f(0) =






0 0 0

0 2 0

0 0 0




 ,

D3f(0) =












0 0 0

0 2 0

0 0 0











0 2 0

2 0 0

0 0 0











0 0 0

0 0 0

0 0 6












22 2006-10-04/115/IN00/2211



S. Trenn: Quantitative analysis of neural networks as universal function approximators

and

D4f(0) =












0 0 0

0 2 0

0 0 0











0 2 0

2 0 0

0 0 0











0 0 0

0 0 0

0 0 6











0 2 0

2 0 0

0 0 0











2 0 0

0 0 0

0 0 0











0 0 0

0 0 0

0 0 0











0 0 0

0 0 0

0 0 6











0 0 0

0 0 0

0 0 0











0 0 6

0 0 0

6 0 0












.

The Taylor polynomial of degree four is for this example

T4{f}(x) = x2
2 + x1x2

2 + x3
3 +

1

2
x1

2x2
2 + x1x3

3.

4.3 Analytical functions

So far, the accuracy of TN{f} was not studied. It is a classical result in analysis (e.g.,

[Amann & Escher 2001b]) that the remainder term in Theorem 4.2.1 fulfills

lim
x→0

RN+1{f}(0)(x)

‖x‖N
= 0, (4.3.1)

i.e. RN+1{f}(0)(x) = o
(
‖x‖N

)
, where ‖x‖ is any norm of x ∈ Rn0 (see the appendix

for details on norms in Rn). In terms of approximation accuracy this implies that there

exists for every N ∈ N and every ε > 0 a δ > 0, which depends on N and ε, such that

∣
∣f(x) − TN{f}(x)

∣
∣ < ε for all x with ‖x‖ < δ.

Unfortunately this does not guarantee good approximation of f in the sense of
∥
∥f −

TN{f}
∥
∥ < ε for a given small ε, because therefore a global (i.e. on the whole of K)

accuracy is necessary and not only on a small environment of the origin. Clearly global

accuracy can only be improved by increasing the degree of the Taylor polynomial, and

a necessary condition for arbitrary good global accuracy is

lim
N→∞

TN{f}(x) = f(x) for all x ∈ K.

2006-10-04/115/IN00/2211 23



S. Trenn: Quantitative analysis of neural networks as universal function approximators

This condition is closely related to analyticity:

Definition 4.3.1 (Analyticity). A smooth function f ∈ C∞(K → R) is called analyt-

ical (in zero) if, and only if, there exists a δ > 0 such that

lim
N→∞

TN{f}(x) = f(x) for all x ∈ (−δ, δ)n0 . (4.3.2)

The largest δ such that equation (4.3.2) holds is called radius of convergence and is

denoted by δc{f}. The space of all analytical functions from K to R is denoted by

Cω
0 (K → R).

Note that usually analyticity is defined such that f is analytical in every point x ∈ K,

i.e. f(·−x) is analytical in zero for all x ∈ K. Therefore the above definition considers

analyticity as a local property and not as usual as a global property. Since global

analyticity does not play an important role in this diploma thesis the term analytical

is used short for analytical in zero.

It is important to distinguish between the two convergence concepts in (4.3.1) and

(4.3.2). In the former the degree of the Taylor polynomial is fixed and x is tending to

zero, while in the latter the point x is fixed and the degree of the Taylor polynomial is

tending to infinity. To make the concept of analyticity clearer consider the following

examples:

• The sine function is analytical in zero with δc{sin} = ∞.

• The function f given by x 7→ 1
x−1

is analytical in zero with δc{f} = 1.

• The function x 7→







0, x ≤ 0,

e−1/x, x > 0,
is not analytical in zero, because all deriva-

tives at zero are zero, but the function is not the zero function in any environment

of the point zero (see Figure 7).

The last example makes clear that in general one can not expect that an increasing

degree of the Taylor polynomial makes the approximation accuracy better. The aim

of the next subsection is therefore to find condition under which there is a relation

between the degree of the Taylor polynomial and the approximation accuracy.
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Figure 7: A C∞-function which is not analytical.

4.4 Approximation accuracy and degree of Taylor polynomials

The definition of analytical functions ensures that the Taylor polynomial converges

point-wise to the original function, but in general point-wise convergence of function

sequences does not guarantee overall uniform convergence. Consider for example the

function sequence (gn)n∈N given by gn : (0, 1) → R and gn(x) = xn. Clearly gn(x) → 0

as n → ∞ for every x ∈ (0, 1). On the other hand it is not possible to find for any

small ε > 0 a N ∈ N, such that ‖gn − 0‖ < ε for all n ≥ N , consider for example

xn := n
√

0.5 ∈ (0, 1), then gn(xn) = 0.5 for all n ∈ N. The problem in this example is

the right boundary, because at the value x = 1 the convergence of gn(x) to zero would

not be given. In general some restrictions on the function sequence most be assumed,

for the analytical functions these are given in the following definition.

Definition 4.4.1 (Nicely analytical functions). An analytical function f ∈ Cω
0 (K →

R) is called nicely analytical if, and only if, firstly the Taylor series converges on the

whole of K = [−1, 1]n0, i.e. the radius of convergence δc{f} fulfills δc{f} > 1, and,

secondly,

lim sup
k→∞

k

√

‖Dkf(0)‖
k!

< 1. (4.4.1)

The space of nicely analytical functions is denoted by Cω
nice(K → R).

Note that for n0 = 1 the condition on the radius of convergence already implies

(4.4.1), see, e.g., [Amann & Escher 2001a, Thm. 1.8], but it is not clear if this impli-

cation also holds for n0 > 1. Note furthermore that by the root criteria ([Amann &

2006-10-04/115/IN00/2211 25



S. Trenn: Quantitative analysis of neural networks as universal function approximators

Escher 2001a, Thm. II.8.5]) condition (4.4.1) implies

∞∑

k=0

‖Dkf(0)‖
k!

< ∞.

It is easy to see that, e.g., polynomials, sine, cosine and the exponential function are

nicely analytical functions.

Finally, it is now possible to formalize the intuition that a higher degree of Taylor

polynomials corresponds not only to a local accuracy increase but also to a better

global approximation accuracy:

Proposition 4.4.2 (Uniform convergence of Taylor polynomials). Let f ∈ Cω
nice(K →

R) be a nicely analytical function on K = [−1, 1]n0, then TN{f} converges uniformly

to f as N → ∞, i.e. for every arbitrarily small ε > 0 one can find an Nε ∈ N such

that
∥
∥TN{f} − f

∥
∥ < ε for all N ≥ Nε.

Proof. From the definition of Dnf(0) in Subsection 4.1 it follows that

∣
∣Dnf(0)xn

∣
∣ ≤

∥
∥Dnf(0)

∥
∥‖x‖n ≤

∥
∥Dnf(0)

∥
∥

for all n ∈ N, x ∈ K = [−1, 1]n0 and ‖x‖ = max
{
|x1|, |x2|, . . . |xn0

|
}
. Let ε > 0, then

there exists, because of (4.4.1), an Nε ∈ N such that

∞∑

k=Nε+1

1

k!
‖Dkf(0)‖ < ε.

From the assumption that the radius of convergence fulfills δc{f} > 1 it follows for all

x ∈ K
∣
∣TN{f}(x) − f(x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=N+1

Dkf(0)

k!
xk

∣
∣
∣
∣
∣

for all N ∈ N and hence

∣
∣TN{f}(x) − f(x)

∣
∣ ≤

∞∑

k=N+1

1

k!
‖Dkf(0)‖ < ε

for all N ≥ Nε. qed
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So far, there was no direct connection to MLPs, therefore the next subsection will

correlate the above results about analytical functions with MLPs.

4.5 MLPs as analytical functions

The following theorem is actually only a corollary of Proposition 4.4.2, but it is a corner

stone of this diploma thesis.

Theorem 4.5.1 (Global Taylor approximation). Let f ∈ Cω
nice(K → R) with K =

[−1, 1]n0 and consider an MLP (h,n, σ,P) with fMLP ∈ Cω
nice(K → R). For every

arbitrary small ε > 0 there exists then Nε ∈ N, such that the following implication

holds:

TNε
{f} = TNε

{fMLP} ⇒ ‖f − fMLP‖ < ε.

Proof. Let ε > 0 be given. By Proposition 4.4.2 it is possible to choose N1, N2 ∈ N

such that
∥
∥f −TN1

{f}
∥
∥ < ε/2 and

∥
∥TN2

{fMLP}−fMLP}
∥
∥ < ε/2. With the assumption

TNε
{f} = TNε

{fMLP} for Nε := max{N1, N2} and the triangle inequality for norms (see

appendix) the assertion of the theorem follows:

‖f − fMLP‖ =
∥
∥f − TNε

{f} + TNε
{fMLP} − fMLP

∥
∥

≤
∥
∥f − TNε

{f}
∥
∥+

∥
∥TNε

{fMLP} − fMLP

∥
∥

≤
∥
∥f − TN1

{f}
∥
∥+

∥
∥TN2

{fMLP} − fMLP

∥
∥

< ε/2 + ε/2 = ε

qed

The restriction in the above theorem to nicely analytical functions f is not a hard

restriction, because as already mentioned all polynomials are nicely analytical func-

tions and hence, by Proposition 3.1.2, Cω
nice(K → R) is dense in C(K → R).

The assumption that the MLP function fMLP is a nicely analytical function is more

critical, because this imposes restrictions to the activation function σ. The next propo-

sition gives a sufficient condition for the activation function for which the MLP function

is a nicely analytical function.

Proposition 4.5.2 (Condition on activation function). Suppose that the activation
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function σ : R → R is analytical in zero with an infinite radius of convergence, i.e.

σ(t) =

∞∑

k=0

akt
k for all t ∈ R,

for some ak ∈ R, k ∈ N.

Then the MLP function fMLP is nicely analytical.

For the proof of this proposition a lemma is needed:

Lemma 4.5.3 (Activation function and nicely analytical functions). Let σ : R → R

be a activation function which fulfills the assumption from Proposition 4.5.2 and let

f1, f2, . . . , fm ∈ Cω
nice(K → R) for some m ∈ N and K = [−1, 1]n0. The function

g : K → R, x 7→ σ
(
w1f1(x) + w2f2(x) + . . . + wmfm(x) + θ

)
,

where w1, w2, . . . , wm, θ ∈ R, is then also nicely analytical.

The proof is technically and is therefore put in the appendix.

Proof of Proposition 4.5.2. Consider Definition 2.3.1 for the MLP function, then it

follows inductively by Lemma 4.5.3 that the mappings x 7→ zi,j for each 1 ≤ i ≤ h

and 1 ≤ j ≤ ni are nicely analytical and hence the MLP function x 7→ y is also nicely

analytical, because the output activation function is the identity function and fulfills

therefore the assumptions of Lemma 4.5.3. qed

Since the transfer function

σ : R → R, t 7→ 1

1 + e−t
(4.5.1)

is widely used in MLPs, it is studied in more detail. It is easy to see that

σ′ = σ − σ2.

It is also possible to express higher derivatives σ(n), n ∈ N, in terms of the original

function σ:
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Lemma 4.5.4 (Derivatives of sigmoid activation function). The n-th derivative σ(n)

of σ as in (4.5.1) is

σ(n) =
n+1∑

i=1

ai,nσ
i,

where

ai,n =

i∑

k=1

(−1)k+1

(

i − 1

k − 1

)

kn.

The proof is technically and is therefore put in the appendix. There, a table of the

first derivatives of σ is given, too. Since the exponential function is analytical in zero,

σ is also analytical in zero and

σ(t) =
∞∑

i=0

σ(i)(0)

i!
ti

for sufficiently small t ∈ R, but to fulfill the condition of Proposition 4.5.2 this equality

must hold for all t ∈ R. In particular, the power series must converge for all t ∈ R, i.e.

the radius of convergence of the power series must be infinity. The latter is equivalent

to the condition (formula of Hadamard, see, e.g., [Amann & Escher 2001a, Thm. 9.2])

lim sup
k→∞

k

√

σ(i)(0)

i!
= 0.

Unfortunately this condition is not fulfilled, as can be seen in Figure 8. The radius of

convergence can be deduced from Figure 8, and is approximately 1/0.32 ≈ 3, which can

also be seen in Figure 9 where Taylor polynomials of degree 7, 19 and 99 are plotted.

Clearly, an approximation outside the convergence radius is not achieved even for

high degrees of the Taylor polynomials. These numerical calculation indicates that the

standard activation function (4.5.1) does not fulfill the assumptions of Proposition 4.5.2

and hence it is not clear whether the MLP function of a standard MLP is nicely

analytical. It seems therefore reasonable to consider other activation functions, e.g.,

• σ(t) = et,

• σ(t) = esin(t),

• σ(t) = sin(t),

2006-10-04/115/IN00/2211 29



S. Trenn: Quantitative analysis of neural networks as universal function approximators

0

200150

0,2

50 1000

0,3

0,15

0,1

0,05

0,25

k

k

√
σ(k)(0)

k!

Figure 8: The k-th root of the k-th Taylor coefficient of the sigmoid activation function σ for
k = 1 . . . 200.
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Figure 9: Taylor polynomials of degree 7, 19 and 99 for the sigmoid activation function.

which fulfill the assumptions of Proposition 4.5.2. Clearly, polynomials also fulfill

the assumption of Proposition 4.5.2 and therefore the MLP function would be nicely

analytical, but the condition in the implication of Theorem 4.5.1, TNε
{f} = TNε

{fMLP},
is not satisfiable for an degree Nε larger then the degree of the activation function

polynomial (or multiple of this order for more than one hidden layer).

Note furthermore that one can show that for the exponential activation function the

necessary condition for approximation capabilities derived in the next section are not

sufficient, see Section 6 for more details.
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5 Number of necessary hidden units

5.1 Main idea: Approximation order

In the previous section it was shown that under certain conditions the order of the

Taylor polynomial corresponds to the approximation accuracy (Theorem 4.5.1). But

even if the conditions are not fulfilled, a higher degree of the Taylor polynomial ensures

a better local approximation as expressed in (4.3.1). The main idea of this diploma

thesis is therefore to consider an approximation order instead of a global approximation

accuracy:

Definition 5.1.1 (Approximation order). Consider f, g ∈ CN(K → R) for N ∈ N.

The function f approximates g with order N if, and only if,

TN{f} = TN{g}.

The question which will be answered in this diploma thesis is the following:

Given an order N ∈ N, how many hidden units are necessary to ensure that an MLP

can reach approximation order N for any sufficiently smooth function f : K → R?

For a better understanding of the following derivation of the answer to this question

an example is considered in parallel.

For the example the desired approximation order is N = 2 and the number of inputs

is n0 = 2. For any f ∈ C2(K → R),

T2{f}(x) = a00 + a10x1 + a01x2 + a11x1x2 + a20x1
2 + a02x2

2

and analogously for the MLP function

T2{fMLP}(x) = b00 + b10x1 + b01x2 + b11x1x2 + b20x1
2 + b02x2

2.

The number of coefficients of a general Taylor polynomial of degree N with n0 variables

is denoted by

NCT (N, n0).
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For the example

NCT (2, 2) = 6.

Furthermore, denote the vector of all coefficients of the Taylor polynomial of f with

CTN{f} ∈ RNCT (N,n0),

which is

CT2{f} = (a00, a10, a01, a11, a20, a02) =: a ∈ R6

and

CT2{fMLP} = (b00, b10, b01, b11, b20, b02) =: b ∈ R6

for the example.

Polynomials are equal if, and only if, all their coefficients are equal to each other, in

particular

TN{f} = TN{fMLP} ⇔ CTN{f} = CTN{fMLP}.

Therefore, to ensure approximation of order N it is necessary that the latter equation

is solvable. In fact, the latter equation is a system of NCT (N, n0) equations, for the

considered example, this are six equations

a00 = b00,

a10 = b10,

a01 = b01,

a11 = b11,

a20 = b20,

a02 = b02.

Whilst the coefficients CTN{f} can be arbitrary, since f can be arbitrary, the coeffi-

cients CTN{fMLP} are uniquely determined through the MLP (h,n, σ,P). The aim of

this diploma thesis is to find a minimal fixed structure, i.e. finding h, n and σ, such

that in principle only through variation of P all function f ∈ C2(K → R) can be ap-

proximated with order N . Recall that the number of parameters of a MLP (h,h, σ,P)
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with a fixed structure is denoted by

NMLP(h,n).

It is then convenient to consider the coefficients CTN{fMLP} as a function of P, i.e.

CTN{fMLP} = CTN,h,n,σ(P),

where CTN,h,n,σ : RNMLP(h,n) → RNCT (N,n0).

The question, whether it is possible to approximate any function f ∈ CN(K → R)

with order N ∈ N with an MLP (h,n, σ,P), is therefore equivalent to the question,

whether one can find for all a ∈ RNCT (N,n0) parameters P ∈ RNMLP(h,n) such that

a = CTN,h,n,σ(P),

i.e. the following proposition holds.

Proposition 5.1.2 (Approximation order and coefficient function). An MLP with fixed

structure, i.e. fixed h ∈ N, n ∈ Nh+1 and sufficiently smooth σ : R → R, is capable of

approximating any function f ∈ CN(K → R) with order N ∈ N if, and only if,

CTN,h,n,σ : RNMLP(h,n) → RNCT (N,n0) is surjective1.

As an example consider the fixed structure h = 1, n = (2, 3) and σ is the standard

activation function given by (4.5.1). The parameters P (in a structured form) are

denoted by

P = (W1,wy),

W1 = (w1,1,w1,2,w1,3),

w1,1 = (w1,1
1 , w1,1

2 , θ1,1) ∈ R3,

w1,2 = (w1,2
1 , w1,2

2 , θ1,2) ∈ R3,

w1,3 = (w1,3
1 , w1,3

2 , θ1,3) ∈ R3,

wy = (wy
1, w

y
2 , w

y
3) ∈ R3,

hence NMLP(h,n) = 12 and P can be considered as an element of R12.

1A function f : X → Y is called surjective, if, and only if, for every y ∈ Y there exists x ∈ X with
f(x) = y, i.e. f maps X onto Y .
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Writing fMLP as FMLP[P] (see Subsection 2.3), the coefficient function is

CT2,1,(2,3),σ(P) =














b00(P)

b10(P)

b01(P)

b11(P)

b20(P)

b02(P)














=






















FMLP[P](0)

∂FMLP[P]
∂x1

(0)

∂FMLP[P]
∂x2

(0)

2
∂2FMLP[P]

∂x1∂x2
(0)

∂2FMLP[P]
∂2x1

(0)

∂2FMLP[P]
∂2x2

(0)






















,

where

FMLP[P](x) = wy
1 σ(w1,1

1 x1 + w1,1
2 x2 + θ1,1)

+ wy
2 σ(w1,2

1 x1 + w1,2
2 x2 + θ1,2)

+ wy
3 σ(w1,3

1 x1 + w1,3
2 x2 + θ1,3)

and in particular

FMLP[P](0) = wy
1σ(θ1,1) + wy

2σ(θ1,2) + wy
3σ(θ1,3),

∂FMLP[P]

∂x1
(0) = wy

1w
1,1
1 σ′(θ1,1) + wy

2w
1,2
1 σ′(θ1,2) + wy

3w
1,3
1 σ′(θ1,3),

etc.

It remains now to show what conditions are necessary for the surjectivity of the

function CTN,h,n,σ.

5.2 Necessary conditions for the solvability of systems of equations

In Proposition 5.1.2 it was shown that the capability of an MLP to approximate with

a given order N is equivalent to surjectivity of a certain function. It is therefore of

interest when functions can in principle be surjective and when not. A main feature of

the function in question is that it is possible to vary the number of parameters, whilst

the number of equations stay the same. For the example which was considered in the

previous subsection the number of equations is always six, the number of parameters is
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for the chosen network structure twelve, but if one takes only a single hidden unit, the

number of parameters would be four. Intuitively, a system of six independent equations

can only be solvable for all given values, if there are at least six “degrees of freedom”

in the equations, i.e. there are at least six independent parameters. Unfortunately, this

intuition is wrong:

Proposition 5.2.1 (Peano curves). There exist a continuous function p : R → R2

which is surjective.

These kind of functions are called Peano curves or “space-filling curves” and are for

example considered in [Sagan 1994]. One important property of these curves is that

they are nowhere differentiable, in other words they only consists of corners, which is

difficult to imagine.

As already mentioned in another context, the continuous function can exhibit strange

properties. But if one considers differentiable function, the above intuition holds:

Theorem 5.2.2 (Surjectivity of differentiable functions). Let U ⊆ Rm be open and

g ∈ C1(U → Rn), i.e. a differentiable function. If m < n then g(U) 6= Rn, i.e. g is not

surjective.

Proof. The following proof is based on [Merker 2006].

The space Rm is Lindelöf (i.e. every open covering has a countable subcovering, see,

e.g., [Abraham, Marsden & Ratiu 1988]) and hence U ⊆ Rm is Lindelöf, too. The set

Rg :=
{

y ∈ Rn
∣
∣ ∀x ∈ g−1(y) : g′(x) ∈ L(Rm → Rn) is surjective

}

is by Sard’s Theorem for Manifolds, [Abraham et al. 1988, Thm. 3.6.8], a countable

intersection of open dense sets. Note that for y /∈ g(U) trivially y ∈ Rg. On the other

hand for every y ∈ g(U) and x ∈ g−1(y) the linear mapping g′(x) is not surjektive,

because m < n. Hence g(U) ∩ Rg = ∅, i.e. g(U) ⊆ Rn\Rg. The complement of

a countable intersection of open dense sets is a countable union of closed sets with

empty interior, hence g(U) ⊆ M :=
⋃

i∈N
Ci, where Ci ⊆ Rn are closed sets with empty

interior.

Seeking a contradiction assume g(U) = Rn, which implies that M = Rn.

The space Rn is locally compact and the Baire Category Theorem, [Abraham et al.

1988, Thm. 1.7.3], yields that Rn is a Baire space, i.e. every countable intersection of
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open and dense subsets is dense. For i ∈ N the subsets Oi := Rn\Ci are open and

dense and hence
⋂

i∈N
Oi is dense in Rn. This yields the contradiction

∅ = Rn\M = Rn\
⋃

i∈N

Ci =
⋂

i∈N

Oi.

qed

The question is now, whether the Taylor coefficient function CTN,h,n,σ is differentiable.

This is answered with the following proposition:

Proposition 5.2.3 (Differentiability of Taylor coefficient function). If σ ∈ C∞(R →
R) then CTN,h,n,σ is differentiable for all N ∈ N, h ∈ N and n ∈ Nh+1.

Proof. Writing TN{fMLP}(x) =
∑

|I|≤N bI(P)xI (see Subsection 3.1), the Taylor coef-

ficient function CT : RNMLP(h,n) → RNCT (N,n0) can be considered as NCT (N, n0) single

functions, which have the values bI(P) ∈ R for some unique index I ∈ Nn0 with |I| ≤ N .

It suffices now to show that for each I ∈ Nn0 with |I| ≤ N the function P 7→ bI(P) is

differentiable.

It is

bI(P) = cI
∂|I|FMLP[P]

(∂x)I
(0),

where cI is some multiple which results from the symmetries of the partial derivatives

and

(∂x)I = ∂i1x1∂
i2x2 · · ·∂in0 xn0

,

if I = (i1, i2, . . . , in0
). From the definition of the MLP function (see Definition 2.3.1)

and the assumption that σ ∈ C∞(R → R) it follows that the MLP function (P,x) 7→
FMLP[P](x) is not only arbitrarily often continuously differentiable with respect to x,

but also with respect to P. This implies that the function (P,x) 7→ FMLP[P](x) is

arbitrarily often differentiable. In particular, there exists for every partial derivative a

further partial derivative. The derivative of P 7→ bI(P) is simply the partial derivative

(with respect to P) of cI
∂|I|FMLP[P]

(∂x)I (0), which itself is a partial derivative of the MLP

function (P,x) 7→ FMLP[P](x) with respect to x. Hence P 7→ bI(P) is differentiable,

which implies differentiability of CTN,h,n,σ. qed

Note that for the differentiability of CTN,h,n,σ only σ ∈ CN+1(R → R) is needed.

The aim of this diploma thesis is to vary only the number of hidden units to achieve
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a good approximation order, an activation function which is not smooth would artifi-

cially restrict the achievable order of approximation. Therefore only smooth activation

functions are considered. Note furthermore that from smoothness of the activation

function already smoothness of the Taylor coefficient function follows.

With the above results it is now possible to establish a quantitative relation between

the approximation order and the structure of the MLP:

Corollary 5.2.4 (Necessary inequality condition). A necessary condition for an MLP

(h,n, σ,P) with smooth σ to be capable of an approximation with order N ∈ N is

NMLP(h,n) ≥ NCT (N, n0),

i.e. the number of parameters in the MLP must be at least the number of coefficients

in the Taylor polynomial of degree N .

It remains now to give explicit formulas for NMLP(h,n) and NCT (N, n0) in order to

calculate the number of necessary hidden units for a given approximation order.

5.3 Number of coefficients in multivariable polynomials

For the calculation of the number of coefficients in the Taylor polynomial the following

lemma is very helpful:

Lemma 5.3.1 (Recursive formula for number of polynomial coefficients). The number

NCT (N, n0) of coefficient of a Taylor-polynomial with n0 variables and degree N fulfills:

• NCT (N, 0) = 1 for all degrees N ∈ N.

• NCT (0, n0) = 1 for all variable numbers n0 ∈ N.

• NCT (N, n0) = NCT (N, n0 − 1) + NCT (N − 1, n0) for all n0 > 0 and N > 0.

Proof. A polynomial without variables is a constant and hence NCT (N, 0) = 1 for all

degrees N ∈ N. A polynomial of degree zero is a constant, too, hence NCT (0, n0) = 1

for all variable numbers n0 ∈ N. Let now n0 > 0, N > 0 and p ∈ PN (Rn0 → R) be

a polynomial of degree N with variables x1, x2, . . . , xn0
, i.e. p consists of NCT (N, n0)

monomials, where also monomials are counted which have a zero-coefficient as long the

degree is not bigger than N . The polynomial p can be written as

p(x1, x2, . . . , xn0−1, xn) = p1(x1, x2, . . . , xn−1) + xnp2(x1, x2, . . . , xn−1, xn),
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where p1 ∈ PN (Rn0−1 → R) consists of all monomials of p where the variable xn does

not occur. The remaining monomials contain all the variable xn and can therefore be

written as xnp2(x1, x2, . . . , xn−1, xn), where p2 ∈ PN−1(R
n0 → R) has degree N − 1.

Hence, by induction, NCT (N, n0) = NCT (N, n0 − 1) + NCT (N − 1, n0). qed

In Lemma 5.3.1 the number NCT (N, n0) can only be calculated recursively, which is

a bit unsatisfying. Fortunately, there exists also an explizit formula:

Proposition 5.3.2 (Number of polynomial coefficients). The number of coefficients

in a Taylor polynomial with n0 variables and degree N is

NCT (N, n0) =

(

N + n0

n0

)

.

Proof. It suffices to show that the given value of NCT (N, n0) fulfills the recursive for-

mula from Lemma 5.3.1, i.e.

(

N + n0

n0

)

=

(

N − 1 + n0

n0

)

+

(

N + n0 − 1

n0 − 1

)

,

but this is a well known property of the binomial coefficients. qed

5.4 Number of parameters in MLP

The number of weights between two layers is the product of the numbers of units in

each layer, because each unit of one layer is connected with all units of the other layer.

For all layers except for the input and output layer the number of biases must be

added, which is the same as the number of units in each layer. These observations are

summarized in the following lemma:

Lemma 5.4.1 (Number of parameters). For an MLP (h,n, σ,P) the number of pa-

rameters P is

NMLP(h,n) =
h∑

i=1

(ni−1 + 1)ni + nh.

Actually, one is not so much interested in NMLP(h,n) but in

N ∗
MLP(n0, n) := max

h∈N,|n|=n
NMLP(h,n),
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where |n| = n1+n2+ . . .+nh and the maximum is only taken over n = (n0, n1, . . . , nh),

where n1, ..., nh > 0 and n0 > 0 is fixed. The number N ∗
MLP(n0, n) is the maximum

number of parameters which an MLP with n hidden units can have, regardless how

the hidden units are distributed in the different hidden layers. For the calculation of

N ∗
MLP(n0, n) consider first the case that the number of hidden layers is fixed:

N h
MLP(n0, n) := max

|n|=n
NP (h,n).

Clearly, by Lemma 5.4.1,

N 1
MLP(n0, n) = (n0 + 1)n + n.

For h = 2 the n hidden units can be distributed to the two hidden layers such that n2

units are in the second and n1 = n − n2 units are in the first hidden layer. Therefore,

by Lemma 5.4.1,

N 2
MLP(n0, n) = max

1≤n2≤n−1

(
(n0 + 1)(n − n2) + (n − n2 + 1)n2 + n2

)
.

To calculate N 2
MLP(n0, n) consider for fixed n, n0 ∈ N the function

m : R → R, x 7→ −x2 + x(n − n0 + 1) + (n0 + 1)n,

then N 2
MLP(n0, n) = max1≤n2≤n−1 m(n2). The real valued function m has a unique

maximum at

xmax =
n − n0 + 1

2
.

Since m is a parabola, N 2
MLP(n0, n) is maximal for n2 =

⌊
n−n0+1

2

⌋
and n2 =

⌈
n−n0+1

2

⌉
,

where ⌊y⌋ is the largest integer smaller or equal to y ∈ R and and ⌈y⌉ is the smallest

integer greater or equal to y. Note that the function value is the same for both points.

The optimal value n2 is only valid, if 1 ≤ n2 ≤ n−1 otherwise one of the hidden layers

would be empty. Under the general assumption that n ≥ 1 and n0 ≥ 0 this yields for

the optimal number n∗
2 of hidden units in the second layer:

n∗
2 = max

{⌊
n − n0 + 1

2

⌋

, 1

}

.
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Hence

N 2
MLP(n0, n) =







(n+n0+3)2

4
− 2(n0 + 1) if n + n0 odd and n ≥ n0 + 1,

(n+n0+3)2−1
4

− 2(n0 + 1) if n + n0 even and n ≥ n0 + 2,

(n0 + 1)(n − 1) + n − 1 otherwise.

For the first two cases the maximum is obtained for n2 =
⌊

n−n0+1
2

⌋
and in the third case

for n2 = 1. For the latter case it is clearly better to take only one hidden layer, because

with one hidden layer more parameters can be obtained. On the other hand, if n is large

compared to n0 the two hidden layer MLP will have more parameters then the single

hidden layer MLP, because in the former the dependence on n is quadratic, whilst in

the latter it is only linear. Evaluating now the inequality N 2
MLP(n0, n) ≥ N 1

MLPP (n0, n)

yields the following lemma:

Lemma 5.4.2 (Two hidden layers vs. one hidden layer).

N 2
MLP(n0, n) ≥ N 1

MLP(n0, n) ⇔







n ≥ n0 + 1 + 2
√

n0 if n + n0 odd,

n ≥ n0 + 1 +
√

4n0 + 1 if n + n0 even,

It remains to consider the case of more than two hidden layers. It is

N 3
MLP(n0, n) = max

n2,n3

NMLP

(
3, (n0, n − n2 − n3, n2, n3)

)

and by Lemma 5.4.1

NMLP

(
3, (n0, n − n2 − n3, n2, n3)

)

= (n0 + 1)(n − n2 − n3) + (n − n2 − n3 + 1)n2 + (n2 + 1)n3 + n3

= (n0 + 1)n + n2(n − n0 − n2 − 1) − n3(n0 − 1)

Clearly, the value of n3 must be chosen minimal to maximise NMLP

(
3, (n0, n − n2 −

n3, n2, n3)
)
, because n0 ≥ 1 (if n0 = 1 then the value of the maximum does not depend

on n3 and it can also be chosen to be minimal to obtain the maximal value). Hence

the optimal value n∗
3 is

n∗
3 = 1
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and

N 3
MLP(n0, n) = max

n2

NMLP

(
3, (n0, n − n2 − 1, n2, 1)

)

= max
n2

(n0 + 1)(n − n2) + (n − n2)n2 − n0 + 1

≤ max
n2

(n0 + 1)(n − n2) + (n − n2 + 1)n2 + n2

= N 2
MLP(n0, n)

Hence a two hidden layers MLP with the same number of hidden units as a three hidden

layers MLP has always at least the same number of parameters and therefore three

hidden layers are not needed if one aims for maximizing the number of parameters

with respect to the number of hidden units. Clearly more then three hidden layers will

yield an analogous result, i.e. to achieve a maximum number of parameters for a given

number of hidden units only MLPs with one or two hidden layers must be considered.

All results of this subsection are summarized in the following proposition:

Proposition 5.4.3 (Maximal number of parameters). The maximum number of pa-

rameters for an MLP with n ∈ N hidden units and n0 inputs is

N ∗
MLP(n) =







(n0 + 2)n if n ≤ n0 + 1 + 2
√

n0,

(n+n0+3)2

4
− 2(n0 + 1) otherwise,

if n + n0 is odd, or

N ∗
MLP(n) =







(n0 + 2)n if n ≤ n0 + 1 +
√

4n0 + 1,

(n+n0+3)2−1
4

− 2(n0 + 1) otherwise,

if n + n0 is even.

5.5 Main result

The aim of this diploma thesis is to answer the question:

Given an order N ∈ N, how many hidden units are necessary to ensure that an MLP

can reach approximation order N for any sufficiently smooth function f : K → R?
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Combining the results from the previous subsections, namely Corollary 5.2.4, Propo-

sition 5.3.2 and Proposition 5.4.3 it is now possible to answer this fundamental question.

Firstly, the simpler case of a single hidden layer MLP is considered:

Theorem 5.5.1 (Number of necessary hidden units for single hidden layer MLPs).

An MLP (h,n, σ,P) with h = 1 (i.e. one hidden layer), n = (n0, n1) ∈ N2 and smooth

σ can only achieve approximation order N ∈ N for any function f ∈ CN(K → R),

K = [−1, 1]n0, if

n1 ≥

(

N + n0

n0

)

n0 + 2

hidden units are used.

If there is no restriction to a single hidden layer MLP then in many cases a two hidden

layer MLP is advantageous, but more than two hidden layers are not beneficial, which

was proved in the previous subsection. The results are summarized in the following

theorem.

Theorem 5.5.2 (Number of necessary hidden units). Let (h,n, σ,P) be an MLP with

h ∈ N, n = (n0, n1, . . . , nh) ∈ Nh+1, σ ∈ C∞(K → R), K = [−1, 1]n0, and parameters

P. Let N ∈ N be the desired approximation order. If

(

N + n0

n0

)

≤ (n0 + 2)(n0 + 1 + 2
√

n0)

then at least

n ≥

0B�N + n0

n0

1CA
n0 + 2

hidden units are necessary to achieve approximation order N ∈ N for any function

f ∈ CN(K → R), otherwise

n ≥ 2

√
√
√
√

(

N + n0

n0

)

+ 2(n0 + 1) − n0 − 3

hidden units are necessary.
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In the first case an MLP with one hidden layer achieves the necessary number of pa-

rameters. For the second case the necessary number of parameters are obtained for an

MLP with two hidden layers, where

n1 =

⌊
n + n0 − 1

2

⌋

,

n2 = n − n1 =

⌈
n − n0 + 1

2

⌉

.

A table of the necessary number of hidden units is given in the appendix.

Remark 5.5.3 (Number of hidden layers).

(i) It is never necessary to use more than one hidden layer, as can be seen from

Theorem 5.5.1 (and also from Theorem 3.2.1), but if one uses only the minimal

number of hidden units from the second case of Theorem 5.5.2 then one has to

use two hidden layers to obtain the necessary number of parameters. The same

stays true, if more than the minimal number of hidden units are used, but if the

number of hidden units is large enough, then two hidden layers are not necessary

any more (although two hidden layers would still be advantageous, because with

the same number of hidden units more parameters are available, which in general

will lead to better approximation results).

(ii) From the condition in Theorem 5.5.2 it follows that if only linear or quadratic

approximation should be achieved, i.e. N ≤ 2, then only one hidden layer is

needed. On the other hand, if the desired approximation order is at least twelve,

then two hidden layers are needed (in the sense of (i)).

Remark 5.5.4 (Growth of the number of necessary hidden units). If n0 is fixed then

the necessary number of hidden units grows polynomially in the approximation order

N . Asymptotically (big O notation), it is for the single hidden hidden layer case n =

O(Nn0) and for the two hidden layer case n = O(Nn0/2).

In Figure 10 the necessary number of hidden units is plotted where the number of

inputs is fixed to n0 = 1, . . . , 5. The polynomial growth can clearly be seen and it is

also obvious that the growth for the single hidden layer case is much faster.

2006-10-04/115/IN00/2211 43



S. Trenn: Quantitative analysis of neural networks as universal function approximators

NN

nn

Figure 10: The number of necessary hidden units for different numbers of inputs (n0 = 1, . . . , 5
from bottom to top) without a restriction to the number of hidden layers (left picture) and with
the restriction to one hidden layer (right picture).
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6 Numerical simulations

6.1 MLPs with different activation functions and its Taylor

polynomials

In this subsection MLPs with its Taylor polynomials are studied. For illustrative pur-

poses only MLPs with one input are considered. As discussed in Subsection 4.5 the

standard activation function has the disadvantage that its Taylor series does not con-

verge globally, therefore other activation functions are considered as well. As activation

function are considered:

• the sigmoid activation function σ(t) = 1
1+e−t ,

• the exponential activation function σ(t) = et,

• the combined exponential-sine activation function σ(t) = esin(t),

• the sine activation function σ(t) = sin(t),

6.1.1 Taylor polynomials of MLPs
(
1, (1, 2), σ,P

)

An MLP with one hidden layer and two hidden units is considered. The MLP’s pa-

rameters P are chosen randomly, here

P = (W1,wy),

W1 = (w1,1,w1,2),

w1,1 = (w,1
1 , θ1,1) = (−4.28829200124012,−0.45353162542848),

w1,2 = (w1,2
1 , θ1,2) = (−3.03409066117072, 0.35300455333831),

wy = (wy
1, w

y
2) = (0.75031647857670,−0.36420143802204).

Because the MLP has six parameters a maximal approximation order of five can be

achieved for the class of smooth functions. The MLP function with its Taylor polyno-

mial of degree five is plotted in Figure 11. Clearly, all Taylor polynomials are a good

approximation of the MLP function in a neighbourhood of zero. The relative error is

smallest for the exponential activation function, but the absolute error is smallest for

the sigmoid and the sine activation and is very large for the combined exponential-sine

activation function.
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Figure 11: MLP function for two hidden units in one hidden layer and for the sigmoid, the
exponential, the combined exponential-sine, and the sine activation function, resp., (solid line) and
its Taylor polynomial of degree five (dashed line).

6.1.2 Taylor polynomials of MLPs
(
1, (1, 10), σ,P

)

The same calculations are done again for a bigger MLP with ten hidden units (but still

in one hidden layer), the parameters P are again chosen randomly:

P = (W1,wy),

W1 = (w1,1,w1,2, . . . ,w1,10),

w1,1 = (w1,1
1 , θ1,1) = (1.07523956716086, 0.68582978257388),

w1,2 = (w1,2
1 , θ1,2) = (0.60919569526693, 0.11531852936401),

w1,3 = (w1,3
1 , θ1,3) = (2.33430105798548,−0.28637475716609),

w1,4 = (w1,4
1 , θ1,4) = (1.15581550114654,−0.53520632660084),

w1,5 = (w1,5
1 , θ1,5) = (−2.12481341944397, 0.29520406952669),

w1,6 = (w1,6
1 , θ1,6) = (4.98395202885761, 0.98532918008095),

w1,7 = (w1,7
1 , θ1,7) = (−4.98822314024399,−0.23089163279376),

w1,8 = (w1,8
1 , θ1,8) = (0.99148596059432,−0.70432204500133),

w1,9 = (w1,9
1 , θ1,9) = (−3.40220869270801, 0.94327619515847),

w1,10 = (w1,10
1 , θ1,10) = (2.28826428716786,−0.56292896723697),

wy = (wy
1, w

y
2 , . . . , w

y
10)

= (0.75031647857670,−0.36420143802204,−0.45353162542848,

0.35300455333831,−0.85765840024802,−0.60681813223414,

0.05815718197072,−0.65648780401238, 0.73992536400516,

−0.51262548758082).
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The number of parameters is 30, the degree of the corresponding Taylor polynomial

is therefore 29. As can be seen from Figure 12 that the exponential and sine activa-

tion function yield very good approximation of the MLP function through its Taylor

polynomials of degree 29 on the whole interval [−1, 1]. Contrarily, the sigmoid and

the combined exponential-sine activation functions yield worse approximation results

than for the lower order above. Of course they still achieve a good approximation in a

neighbourhood of zero.

x

y

x

y

x

y

x

y

Figure 12: MLP function for ten hidden units in one hidden layer and for the sigmoid, the
exponential, the combined exponential-sine, and the sine activation function, resp., (solid line) and
its Taylor polynomial of degree 29 (dashed line).

It should be reminded again that these figures show only how well the MLP func-

tion is approximated by its own Taylor polynomial. Clearly, a good approximation is

necessary to achieve good approximation results with other function which have the

same Taylor polynomial as the MLP function. Of course, if the function which should

be approximated is not well approximated through its own Taylor polynomial, then an

MLP function which have this Taylor polynomial will in general not approximate the

function well.

A second point is that although the exponential function seems to perform well, it

has the huge drawback that, if it is used in a single hidden layer MLP, the neces-

sary condition on the number of hidden units is definitely not sufficient to achieve a

given approximation order for the whole class of smooth functions. The reason is that

σ(t+θ) = σ(t)σ(θ) and σ′ = σ, which yields that the biases can always be expressed by

the weights between the hidden layer and the output layer. Hence the “independent”
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parameters do not include the biases and therefore more hidden units are necessary to

achieve the approximation order, which is in general maximally possible for the number

of parameters.

6.1.3 Taylor polynomials of MLPs
(
2, (1, 1, 1), σ,P

)

As in Subsection 6.1.1 two hidden units are considered, but now they are distributed

in two hidden layers. This yields only five parameters and therefore the maximal

approximation order is four. Note by the way that it can be seen here that it is not

advantage to distribute two hidden units to two hidden layers, because the number of

parameters gets lower. The randomly chosen parameters P are

P = (W1,W2,wy),

W1 = (w1,1),

w1,1 = (w1,1
1 , θ1,1) = (−2.26765812714240,−0.36420143802204),

W2 = (w2,1),

w2,1 = (w2,1
1 , θ2,1) = (−4.28829200124012, 0.35300455333831),

wy = (wy
1) = (0.75031647857670).
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x
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x
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Figure 13: MLP function for one hidden unit in each of the two hidden layers and for the sigmoid,
the exponential, the combined exponential-sine, and the sine activation function, resp., (solid line)
and its Taylor polynomial of degree four (dashed line).

As can be seen in Figure 13 the Taylor polynomial of degree four only approximates

the MLP function in a neighbourhood of zero. The best absolute and relative approxi-
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mation yields the sigmoid activation function. The combined exponential-sine and sine

activation yield bad approximations results.

6.1.4 Taylor polynomials of MLPs
(
2, (1, 5, 5), σ,P

)

Finally, a two hidden layer MLP with ten hidden units is considered, where five hidden

units are in each hidden layer. This distribution of hidden units yields a total number of

45 parameters, which is much more than the number of parameters in Subsection 6.1.2,

which implies that in the case of ten hidden units it is advantageous to distribute the

hidden units to two hidden layers instead of one hidden layer (in agreement with

Theorem 5.5.2). The 45 parameters are chosen randomly and are

P= (W1,W2,wy),

W1= (w1,1,w1,2,w1,3,w1,4,w1,5),

w1,1= (w1,1
1 , θ1,1) = (2.05748934772165,−0.60681813223414),

w1,2= (w1,2
1 , θ1,2) = (0.34595558809202, 0.05815718197072),

w1,3= (w1,3
1 , θ1,3) = (−0.85912427149826,−0.65648780401238),

w1,4= (w1,4
1 , θ1,4) = (−1.60561897980251, 0.73992536400516),

w1,5= (w1,5
1 , θ1,5) = (0.88561220858008,−0.51262548758082),

W2 = (w2,1,w2,2,w2,3,w2,4,w2,5),

w2,1= (w2,1
1 , w2,1

2 , w2,1
3 , w2,1

4 , w2,1
5 , θ2,1)

= (0.43009582686434, 1.99358081154304, 1.24044147664523,

0.40223303871561, 0.65468276770377, 0.98532918008095),

w2,2= (w2,2
1 , w2,2

2 , w2,2
3 , w2,2

4 , w2,2
5 , θ2,2)

= (0.24367827810677,−1.99528925609760,−1.28452732408894,

−1.26542411452725,−1.19550998693095,−0.23089163279376),

w2,3= (w2,3
1 , w2,3

2 , w2,3
3 , w2,3

4 , w2,3
5 , θ2,3)

= (0.93372042319419, 0.39659438423773,−0.68053257257412,

0.70678113922672,−1.49664747439645,−0.70432204500133),

w2,4= (w2,4
1 , w2,4

2 , w2,4
3 , w2,4

4 , w2,4
5 , θ2,4)

= (0.46232620045862,−1.36088347708320,−1.51582106651229,

−1.76278876892503, 1.07278077945675, 0.94327619515847),

w2,5= (w2,5
1 , w2,5

2 , w2,5
3 , w2,5

4 , w2,5
5 , θ2,5)

= (−0.84992536777759, 0.91530571486715,−0.16564368704362,

1.14714182472919,−1.16696599772551,−0.56292896723697),
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wy = (wy
1 , w

y
2 , w

y
3, w

y
4 , w

y
5)

= (0.75031647857670,−0.36420143802204,−0.45353162542848,

0.35300455333831,−0.85765840024802).

As can be seen in Figure 14 the Taylor polynomials approximate the MLP functions

very well, only for the combined exponential-sine activation function the approximation

is only local. The relativ error is for the sigmoid, the exponential and the sine activa-

tion function nearly the same, whilst the absolute error for the exponential activation

function is large compared to the absolute error of the sigmoid and sine activation

function. This is not surprising, because the MLP with exponential activation func-

tion produces very large function values. In particular, this MLP is very sensitiv to

parameter changes, this will lead to difficulties in the learning process as illustrated

later in Subsection 6.2.3.

x

y

x

y

x

y

x

y

Figure 14: MLP function for five hidden units in each of the two hidden layers and for the sigmoid,
the exponential, the combined exponential-sine, and the sine activation function, resp., (solid line)
and its Taylor polynomial of degree 44 (dashed line).

6.2 Approximation of given polynomials with MLPs

In this subsection a given multivariable polynomial will be approximated by an MLP.

The MLP will be trained with the standard back-propagation algorithm, see [Rumelhart

et al. 1986] or any textbook on neural networks. There are two main issues: Firstly,

the correlation between the number of hidden units and the approximation accuracy

is studied and secondly, the behaviour for different activation functions is of interest.
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6.2.1 Learning pattern distribution

The learning of the MLP needs learning patterns, i.e. values for the input and the

corresponding outputs. Different learning patterns will yield different approximation

results. To achieve global approximation accuracy the best choice are learning patterns,

where the inputs are distributed uniformly in the interval of interest (i.e. [−1, 1]).

But this will in general not give a good approximation order, because for the latter

the accuracy in a neighbourhood of zero is much more important than the accuracy

away from zero. Hence learning patterns where the inputs are concentrated around

zero seems advantageous. To illustrate this point, a simple MLP (1, (1, 3), σ,P) is

considered. The maximum approximation order which this MLP can theoretically

achieve is eight (the MLP has nine parameters), hence the function which should be

approximated is a polynomial of degree eight with randomly chosen coefficients. In

Figure 15 an MLP with the sigmoid activation function is trained for different input

distributions. The dots are the 500 learning points, which are randomly chosen in

xx x

y y y

Figure 15: Sigmoid activation function: Trained MLP function (solid line) for different distribution
of the sample inputs, left: uniformly distributed, middle: uniformly distributed to the power of five,
right: uniformly distributed to the power of 31.

the interval [−1, 1]. In the left picture the distribution of the inputs x is uniform,

in the middle picture the uniformly distributed input values are taken to the power

of five, which yields a distribution in [−1, 1] which is more concentrated around zero.

In the right picture the uniformly distributed input values are taken to the power

of 31, which yields an extreme concentration at zero. To judge the approximation

accuracy the mean square error (MSE) is calculated. Therefore another 500 points are

chosen randomly (with the same distribution as the learning pattern), the MSE for

the uniformly distributed inputs is 0.179, for the inputs raised to the power of five the

MSE is 0.060, and for the inputs raised to the power of 31 the MSE is 0.015.
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The calculations are repeated for the other activation functions and are illustrated

in Figure 16, Figure 17 and Figure 18 The mean square error for the exponential

xx x

y y y

Figure 16: Exponential activation function: Trained MLP function (solid line) for different distri-
bution of the sample inputs, left: uniformly distributed, middle: uniformly distributed to the power
of five, right: uniformly distributed to the power of 31.

xx x

yy y

Figure 17: Combined exponential-sine activation function: Trained MLP function (solid line) for
different distribution of the sample inputs, left: uniformly distributed, middle: uniformly distributed
to the power of five, right: uniformly distributed to the power of 31.

x x x

y y y

Figure 18: Sine activation function: Trained MLP function (solid line) for different distribution of
the sample inputs, left: uniformly distributed, middle: uniformly distributed to the power of five,
right: uniformly distributed to the power of 31.

activation function is 0.097, 0.039 and 0.008, resp., for the combined exponential-sine
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activation function 0.063, 0.029 and 0.006, resp., and for the sine activation function

0.080, 0.038, and 0.008, resp.

From the Figures it can be seen that the highest power, i.e. the highest concentration

around zero, does not yield the best approximation order. The reason for this might

be that the most input values are so close to zero that the machine precision limits

the approximation accuracy. It is an interesting question what the best distribution

is for achieving the desired approximation order, but this is not in the scope of this

diploma thesis. In the following numerical simulation the distribution which results

from raising the uniformly distributed inputs to the power of five will be used.

6.2.2 Approximation with a single hidden layer MLP

An MLP
(
1, (3, 60), σ,P

)
is considered, the number of hidden units fulfill the necessary

condition to achieve approximation order of ten (indeed for this approximation order

only 58 hidden units are necessary, but to be comparable to the next subsection 60

hidden units where chosen).

The same polynomial of degree ten was considered for all four different activation

functions. Each MLP was trained five times with different initial values for the net-

work parameters (which were chosen randomly, but are the same for each activation

function). For the learning 10000 different points were randomly generated (again the

same for each activation function) and every 1000 learning steps the error was calcu-

lated with 1000 random points which the network had not learned yet. The distribution

of the randomly generated input points is in each component the uniform distribution

on [−1, 1] taken to the power of five. The mean square error (in decade logarithmic

scale) is plotted in Figure 19.

As can be seen from Figure 19, the sigmoid activation function compares badly to

the other three activation function, the remaining error is about a factor of ten larger.

Since the same learning algorithm was used, the reason for this bad performance might

be the “bad” properties of the sigmoid function as described in Subsection 4.5, namely

that the sigmoid function is analytical, but its Taylor series doesn’t converge globally.

The same calculations are repeated for a single hidden layer MLP with 30 and 120

hidden units and are illustrated in Figure 20. In both cases the learning error is

not significantly different from the error of the MLP with 60 hidden units. There

are some possible reasons for this behaviour. Firstly, it is not clear if the chosen
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Figure 19: The mean square error (MSE) for learning a single hidden layer MLP with 60 hidden
units with the sigmoid, exponential, combined exponential-sine, and sine activation function, resp.,
the abscissa stands for 1000 learning steps and the ordinate is the decade logarithm of the MSE.
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Figure 20: The mean square error (MSE) for learning a single hidden layer MLP with 30 (top four
pictures) and 120 (bottom four pictures) hidden units each with the sigmoid, exponential, combined
exponential-sine, and sine activation function, resp., the abscissa stands for 1000 learning steps and
the ordinate is the decade logarithm of the MSE.

learning method actually achieves a good approximation order. If for example the

learning method (in particular the chosen distribution of of learning inputs) can only

achieve a lower approximation order than the theoretical maximally possible order for

the MLP, then an MLP with a lower number of hidden units might have the same

approximation accuracy. After all, the distribution for the learning inputs was only

chosen heuristically, a theoretical analysis of the best distribution is an interesting topic

for further research. Secondly, a better approximation order does in general not imply a

better approximation accuracy, as can for example be seen in Figure 11 and Figure 12,
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where for the combined exponential-sine activation function the overall accuracy is

worse for a higher approximation order. At least one can see from the simulations that

a much larger number of hidden units did not improve the approximation accuracy and

hence more than 60 hidden units seems not to be necessary.

6.2.3 Approximation with a two hidden layers MLP

Analogue calculations as in the previous subsection are done for an MLP with two

hidden layers. The number of hidden units are chosen in such a way that the two hidden

layers MLP has nearly the same number of parameters as the single hidden layer MLP.

A single hidden layer MLP with 60 hidden units has 300 different parameters, an MLP

with two hidden layers and 15 units in the first and 14 units in the second layer has 298

different parameters. Therefore an MLP
(
2, (1, 15, 14), σ,P

)
is considered. The results

of the back-propagation algorithms are shown in Figure 21. It is important to note that

the learning process of the MLP with the exponentional activation function was very

unstable, therefore the learning rate for this MLP is much lower than the learning rate

for the other activation functions. Compared with the results for the single hidden layer
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0

2

4

0 5 10

−2

0

2

4

0 5 10

−2

0

2
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0 5 10

−2

0

2
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Figure 21: The mean square error (MSE) for learning an MLP with 15 units in the first hidden
layer and 14 units in the second hidden layer with the sigmoid, exponential, combined exponential-
sine, and sine activation function, resp., the abscissa stands for 1000 learning steps and the ordinate
is the decade logarithm of the MSE.

MLP, the combined exponential-sine and sine activation functions perform significantly

better. This is interesting because both networks, the single hidden layer MLP and

the two hidden layers MLP, had nearly the same number of parameters (300 and 298).

There seems to be no improvement for the sigmoid activation function if the hidden

units are distributed in two layers instead of one and the number of parameters stays

unchanged.
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The learning process is also done for a smaller MLP
(
2, (3, 8, 7), σ,P

)
and a bigger

MLP
(
2, (3, 30, 28), σ,P

)
, see Figure 22. Again it was necessary to have a lower learning
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Figure 22: The mean square error (MSE) for learning an MLP with 8 units in the first hidden
layer and 7 units in the second hidden layer (top four pictures) and with 30 units in the first hidden
layer and 28 in the second hidden layer (bottom four pictures) each with the sigmoid, exponential,
combined exponential-sine, and sine activation function, resp., the abscissa stands for 1000 learning
steps and the ordinate is the decade logarithm of the MSE.

rate for the exponential activation function than for the other activation functions. The

low learning rate yields that 10000 learning steps are not sufficient for large networks.

It should be possible to fine tune the learning procedure to achieve faster results,

but this is out of the scope of this diploma thesis. These simple simulations should

only illustrate the qualitative behaviour for different activation functions and different

network sizes.
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7 Conclusions

The main contribution of this diploma thesis is the explicit formula for the necessary

number of hidden units in a multilayer perceptron to achieve a given approximation

order. It was also possible to decide how many hidden layers should be used. It turns

out that more than two hidden layers are not needed, if one aims to minimize the

number of necessary hidden units. Depending on the number of inputs and the desired

approximation order one or two hidden layers should be used. For high approximation

orders (≥ 12) two hidden layers should be used instead of one hidden layer, the same is

true for smaller approximation order and a sufficiently high number of inputs, as long

as the approximation order is at least three. Interestingly, for linear and quadratic

approximation only one hidden layer is needed.

The correlation between approximation order and approximation accuracy was stud-

ied in detail. A sufficient condition was given for the activation function for which a

high approximation order is equivalent to a high approximation accuracy. It turned

out that the standard sigmoid activation function does not fulfill this condition, there-

fore, in the numerical simulations also other activation functions were studied. Indeed

the sigmoid activation function was outperformed by the other activation functions in

many situations. It seems that the sine activation function performs best for approxi-

mating functions with a given approximation order.

Although the important question “How many hidden units are necessary?” was an-

swered in a satisfying manner, there are other important questions which remain open.

The next obvious question considers the sufficient number of hidden units and under

which conditions the number of necessary hidden units, calculated in this diploma the-

sis, is also sufficient. For the exponential activation function it was already observed

in this diploma thesis that the necessary number of hidden units is not sufficient. An-

other important question, which was mentioned in this diploma thesis but not studied

rigorously, is how an MLP must be trained to achieve a good approximation order.
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Appendix

A Tables of necessary hidden units
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1 2 3 4 5 6 7 8 9 10 11

1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

2
1 2 2 3 3 4 4 5 5 6 6
1 2 2 3 3 4 4 5 5 6 6

3
2 3 4 6 8 11 14 17 20 24 28
2 3 4 6 8 11 (10,4) (12,5) (13,6) (16,7) (18,8)

4
2 4 7 12 18 27 37 50 65 84 105
2 4 7 (7,4) (10,6) (13,8) (17,11) (21,14) (25,18) (30,21) (35,26)

5
2 6 12 21 36 58 88 129 182 251 336
2 6 (6,4) (10,7) (14,11) (20,15) (26,21) (34,28) (43,35) (53,44) (64,55)

6
3 7 17 35 66 116 191 301 455 668 952
3 (4,3) (8,6) (13,10) (20,16) (29,24) (40,34) (53,46) (69,61) (88,79) (109,100)

7
3 9 24 55 114 215 382 644 1040 1621 2448
3 (4,4) (9,8) (16,14) (26,23) (40,35) (57,51) (78,72) (105,98) (138,129) (176,167)

8
3 12 33 83 184 376 715 1287 2210 3647 5814
3 (5,5) (11,10) (20,18) (34,31) (53,48) (78,73) (112,105) (154,146) (207,199) (273,263)

9
4 14 44 120 286 626 1272 2431 4420 7699 12920
4 (6,5) (13,12) (25,22) (43,39) (69,64) (105,100) (154,147) (219,211) (302,293) (408,398)

Table 1: Necessary number of hidden units for an MLP with 1 to 11 inputs and desired approximation order 1 to 9. The first entry is
the necessary number of hidden units for an MLP with one hidden layer, the second entry is the necessary number of hidden units for a
two hidden layer MLP, if the second entry consists only of one number, then a second layer is not necessary.
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12 13 14 15 16 17 18 19

1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2
7 7 8 8 9 9 10 10
7 7 8 8 9 9 10 10

3
33 38 43 48 54 60 67 74

(20,9) (22,11) (25,12) (27,14) (30,15) (32,17) (35,18) (38,20)

4
130 159 192 228 270 315 366 422

(41,30) (47,36) (54,41) (61,47) (68,53) (76,60) (84,67) (92,75)

5
442 572 727 912 1131 1386 1683 2024

(77,66) (91,79) (106,93) (123,109) (141,126) (160,145) (182,165) (204,187)

6
1326 1809 2423 3192 4146 5313 6730 8434

(134,124) (163,151) (195,182) (231,218) (271,257) (316,300) (365,348) (419,401)

7
3600 5168 7268 10032 13620 18216 24035 31324

(223,212) (276,265) (339,327) (411,398) (493,479) (586,571) (691,675) (809,792)

8
8998 13566 19986 28842 40860 56925 78114 105718

(353,342) (449,438) (564,551) (698,685) (856,841) (1038,1023) (1248,1231) (1488,1471)

9
20995 33162 51075 76912 113499 164450 234342 328900

(540,530) (703,692) (902,890) (1141,1128) (1427,1413) (1766,1750) (2163,2146) (2626,2609)

Table 2: Necessary number of hidden units for an MLP with 12 to 19 inputs and desired approximation order 1 to 9. The first entry is
the necessary number of hidden units for an MLP with one hidden layer, the second entry is the necessary number of hidden units for a
two hidden layer MLP, if the second entry consists only of one number, then a second layer is not necessary.
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1 2 3 4 5 6 7 8 9 10

10
4 17 58 167 429 1001 2161 4376 8398 15397
4 (6,6) (15,14) (30,27) (53,49) (88,83) (138,132) (207,201) (302,294) (428,419)

11
4 20 73 228 624 1547 3536 7559 15270 29393
4 (7,7) (17,16) (35,33) (64,61) (109,105) (176,171) (273,266) (408,400) (592,583)

12
5 23 91 304 884 2321 5599 12597 26721 53888

(2,3) (8,7) (20,18) (41,38) (77,73) (134,130) (223,217) (353,346) (540,533) (802,794)

13
5 27 112 397 1224 3392 8614 20349 45220 95339

(2,3) (9,8) (22,20) (47,44) (91,87) (163,158) (276,271) (449,443) (703,696) (1068,1059)

14
5 30 136 510 1662 4845 12920 31977 74290 163438

(2,3) (9,9) (24,23) (53,51) (106,102) (195,190) (339,334) (563,557) (902,894) (1398,1390)

15
6 34 164 646 2215 6783 18950 49032 118864 272397

(2,3) (10,9) (27,25) (60,58) (123,119) (231,226) (411,405) (698,692) (1141,1134) (1806,1797)

16
6 39 194 808 2907 9327 27240 73548 185725 442645

(3,3) (11,10) (29,28) (68,65) (141,137) (271,267) (493,488) (856,849) (1427,1420) (2303,2294)

17
6 43 228 998 3762 12619 38456 108158 284050 703024

(3,3) (11,11) (32,30) (75,73) (160,157) (316,311) (586,581) (1038,1031) (1766,1758) (2903,2894)

18
7 48 266 1220 4807 16825 53412 156228 426075 1093593

(3,3) (12,11) (35,33) (84,81) (181,178) (365,360) (691,686) (1248,1241) (2163,2155) (3621,3612)

Table 3: Necessary number of hidden units for an MLP with 1 to 10 inputs and desired approximation order 10 to 18. The first entry is
the necessary number of hidden units for an MLP with one hidden layer, the second entry is the necessary number of hidden units for a
two hidden layer MLP, if the second entry consists only of one number, then a second layer is not necessary.
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B Mathematical background and proofs

B.1 Metric and normed spaces

Definition B.1.1 (Metric). Let M be some set. A mapping d : M × M → R
≥0

is

called a metric if, and only if, for all x, y, z ∈ M

M1: d(x, y) = 0 ⇔ x = y,

M2: d(x, y) = d(y, x), and

M3: d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

If d is a metric on M , then (M, d) is called metric space.

If the metric d is clear from the context, then sometimes M is also called metric

space. Note that every set S is a metric space with the discrete metric, which is

defined by d(s, s) = 1 for all s ∈ S and zero otherwise, but this metric doesn’t have

much practical relevance.

For a metric space (M, d) the open ε-ball Bε(m) at m ∈ M for ε > 0 is defined as

Bε(m) := { x ∈ M | d(x, m) < ε } .

A subset O ⊆ M is said to be open if, and only if for all o ∈ O there exists ε > 0 such

that Bε(o) ⊆ O. A subset C ⊆ M is called closed if, and only if, its complement M\C
is open.

Definition B.1.2 (Compactness). Let (M, d) be a metric space. A subset K ⊆ M is

called compact if, and only if, for all families O ⊆ P(M) of open sets of M which

cover K, i.e.
⋃O ⊇ K, there exists a finite subfamily {O1, O2, . . . , ON} ⊆ O, N ∈ N,

which still covers K.

A compact set is always closed and bounded, the converse is in general not true.

Definition B.1.3 (Norm). Let V be a real vector space (i.e. scalar multiplication and

addition is defined). A mapping ‖ · ‖ : V → R
≥0

is called a norm if, and only if, for

all v, w ∈ V and λ ∈ R

N1: ‖v‖ = 0 ⇔ v = 0,
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N2: ‖λv‖ = |λ| ‖v‖, and

N3: ‖v + w‖ ≤ ‖v‖ + ‖w‖ (triangle inequality).

If ‖ · ‖ is a norm on V , then
(
V, ‖ · ‖

)
is called normed space.

Again, as for metric spaces, if the norm is clear from the context, then V is also

called a normed space. A classical normed space is the euclidian Rn, n ∈ N, where

‖x‖ =
∑n

i=1 xi
2 for x = (x1, . . . , xn) ∈ Rn. For Rn there are also other norms possible,

e.g., ‖x‖ = max
{
|x1|, . . . , |xn|

}
, which is mostly used in this diploma thesis. It can be

shown that all possible norms on Rn are equivalent, i.e. they are essentially the same

and most properties, like continuity, convergence, boundedness, do not depend on the

specific chosen norm.

Every normed space
(
V, ‖ · ‖

)
is also a metric space with the induced metric d :

V × V → R
≥0

given by

d(v, w) = ‖v − w‖,

which can easily be shown to fulfill the properties M1 - M3. Hence openness and

compactness can also be considered in normed spaces. It is a well known classical

result (see, e.g., [Amann & Escher 2001a, Thm. III.3.5]) that a subset K ⊆ Rn is

compact if, and only if, K is closed and bounded.

The space of continuous function C(K → R) on a compact set K ⊆ Rn is a normed

space:

Proposition B.1.4 (C(K → R) as normed space). The mapping ‖ · ‖ : C(K → R) →
R

≥0
given by

‖f‖ = max
x∈K

∣
∣f(x)

∣
∣ < ∞

is a norm on C(K → R).

Proof. The space C(K → R) is a Vector space with scalar multiplication and addition

(pointwise). Every continuous function is bounded on a compact set and the maximum

is attained in K (see, e.g., [Amann & Escher 2001a, Kor. III.3.8]) and therefore ‖f‖
is well defined for all f ∈ C(K → R). Clearly N1 is fulfilled, because if f ≡ 0, then

‖f‖ = 0 and if ‖f‖ = 0 it must be
∣
∣f(x)

∣
∣ = 0 for all x ∈ K, hence f is the zero

function. N2 is also fulfilled, because

‖λf‖ = max
x∈K

∣
∣λf(x)

∣
∣ = max

x∈K
|λ|
∣
∣f(x)

∣
∣ = |λ|‖f‖.
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Finally, N3 is fulfilled as well, because

‖f + g‖ = max
x∈K

∣
∣f(x) + g(x)

∣
∣ ≤ max

x∈K

(∣
∣f(x)

∣
∣+
∣
∣g(x)

∣
∣
)

≤ max
x∈K

∣
∣f(x)

∣
∣+ max

x∈K

∣
∣g(x)

∣
∣ = ‖f‖ + ‖g‖.

qed

B.2 Banach spaces

Banach spaces are complete normed spaces. Completeness means, loosely speaking,

that there are no gaps, e.g., the space of rational numbers is not complete, because, for

example, the number
√

2 is not rational. The real numbers are complete. For a precise

definition of completeness the concept of Cauchy sequences is needed:

Definition B.2.1 (Cauchy sequence). Let
(
V, ‖ · ‖

)
be a normed space and let (vn)n∈N

be a sequence in V . The sequence (vn) is called Cauchy sequence if, and only if, for

all ε > 0 there exists N ∈ N with

‖vn − vm‖ < ε ∀ n, m ≥ N.

Note that in general a Cauchy sequence need not to converge, for example the rational

sequence (vn) given by vn = (1 + 1/n)n is a Cauchy sequence, but it does not converge

in the space of rational numbers, because the limit in R is Euler’s number e, which is

not a rational number. On the other hand the rational sequence (vn) given by vn = 1/n

is also a Cauchy sequence and does converge in Q.

Definition B.2.2 (Banach space). A normed space
(
V, ‖ · ‖

)
is called complete or

Banach space if, and only if, all Cauchy sequences have a limit in V .

Note that the concept of completeness can also be defined for metric spaces, but a

complete metric space which is not a Banach space does not play any role here. As

mentioned above all norms on Rn are equivalent, in particular, the normed space Rn is

always a Banach space, regardless which norm is considered. It was already shown that

the space of continuous functions C(K → R) on some compact K is a normed space.

The following proposition gives a statement about the completeness of this normed

space:
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Proposition B.2.3 (Completeness of C(K → R)). Let K ⊆ Rn be some compact set.

(i) The normed space
(
C(K → R), ‖ · ‖

)
with the maximum norm ‖ · ‖ as defined in

Proposition B.1.4 is a Banach space.

(ii) Define for p ≥ 1 the p−norm

‖ · ‖p : C(K → R) → R
≥0

, f 7→ ‖f‖ :=

(∫

K

∣
∣f(x)

∣
∣
p
dx

)1/p

,

then
(
C(K → R), ‖ · ‖p

)
is a normed space, but not a Banach space.

Proof. The proof of the first assertion can be found in [Amann & Escher 2001a,

Thm. 2.6]. The properties N1 and N2 for ‖ · ‖p are easy to see, while N3 is well

known as Minkowski’s inequality. It remains to show that
(
C(K → R), ‖ · ‖p

)
is not

complete, i.e. that there exist a Cauchy sequence in C(K → R) which does not con-

verge in C(K → R). Without restriction let K = [0, 2] and consider the function

sequence (fn)n∈N given by

fn : [0, 2] → R, x 7→







xn, x ∈ [0, 1]

1, x > 1

Clearly fn is continuous for every n ∈ N and, for n ≥ m,

‖fm − fn‖p =

∫ 1

0

∣
∣xm(1 − xn−m)

∣
∣
p
dx ≤

∫ 1

0

xpmdx ≤ 1

mp + 1
.

Hence for ε > 0 and N ≥ 1
pε

it is for all n ≥ m ≥ N

‖fm − fn‖p < ε,

i.e. (fn) is a Cauchy sequences. The function sequence converges pointwise to the

function f : [0, 2] → R given by

f(x) =







0, x ∈ [0, 1),

1, x ∈ [1, 2],

which is not a continuous function and hence (fn) does not converge in C(K → R). qed
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B.3 Proof of Proposition 3.1.2

B.3.1 Denseness of P(K → R) in C(K → R)

This proof is based on the proof of the more general result in [Amann & Escher 2001a,

Thm. V.4.7].

Step 1: It will be shown that for every δ > 0 and for every f ∈ P(K → R) there exists

g ∈ P(K → R) with
∥
∥|f | − g

∥
∥ < δ.

The generalized binomial coefficient

(

α

k

)

for α ∈ R and k ∈ N is defined as

(

α

k

)

:=
α(α − 1)(α − 2) · · ·

(
α − (k − 1)

)

k!

and

(

α

0

)

= 1. Many of the properties for the classical binomial coefficient still holds,

in particular

(1 + x)α =
∞∑

k=0

(

α

k

)

xk, for all x ∈ [−1, 1],

see, e.g., [Amann & Escher 2001a, Thm. V.3.10], where it is also shown that

sup
x∈[−1,1]

∣
∣
∣
∣
∣
(1 + x)α −

n∑

k=0

(

α

k

)

xk

∣
∣
∣
∣
∣
→ 0

as n → ∞, i.e. the convergence is uniformly on the whole interval [−1, 1]. With α = 1/2

and x = t2 − 1 this yields for all t ∈ [−1, 1]:

|t| =

∞∑

k=0

(

1/2

k

)

(t2 − 1)k,

and for every δ̃ > 0 there exists Nδ̃ ∈ N with

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|t| −
N

δ̃∑

k=0

(

1/2

k

)

(t2 − 1)k

︸ ︷︷ ︸

P
δ̃
(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

< δ̃ for all t ∈ [−1, 1],
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where Pδ̃ ∈ PN
δ̃

(
[−1, 1] → R

)
.

Let f ∈ C(K → R) and δ > 0. Since f is continuous and K is compact, f is bounded

and hence ‖f‖ < ∞ (see Proposition B.1.4). Let δ̃ := δ/‖f‖ > 0 and for an arbitrary

but fixed x ∈ K let t := f(x)/‖f‖ ∈ [−1, 1], then

∣
∣
∣

∣
∣f(x)/‖f‖

∣
∣− Pδ̃

(
f(x)/‖f‖

)
∣
∣
∣ < δ̃ = δ/‖f‖, for all x ∈ K.

With gδ : K → R, x 7→ ‖f‖Pδ̃

(
f(x)/‖f‖

)
it is gδ ∈ P(K → R) and

∣
∣
∣

∣
∣f(x)

∣
∣− gδ(x)

∣
∣
∣ < δ ∀x ∈ K.

Step 2: It will be shown that for every f ∈ C(K → R) and ε > 0 there exists h ∈
C(K → R) and p ∈ P(K → R) with ‖f − h‖ < ε/2 and ‖h − p‖ < ε/2.

Let hy,y(x) = f(y) for all x,y ∈ K and for y 6= z ∈ K let hy,z be given by

hy,z(x) = f(y) + (y − x) · (y − x)
f(z) − f(y)

(y − z) · (y − z)
,

which is a polynomial in x of degree two (or less if f(z) = f(y)). Note that hy,z(y) =

f(y) and hy,z(z) = f(z). Define for y, z ∈ K

Uy,z := { x ∈ K | hy,z(x) < f(x) + ε/2 } ,

Vy,z := { x ∈ K | hx,y(x) > f(x) − ε/2 } ,

which are open, because hy,z− f is continuous. Furthermore, y ∈ Uy,z and z ∈ Vy,z for

all y, z ∈ K. For any fixed z ∈ K the family { Uy,z | y ∈ K } is an open covering of

the compact set K, which implies that there exists Nz ∈ N points y1,y2, . . . ,yNz
with

K ⊆
Nz⋃

i=1

Uyi,z.

Define

hz := min
1≤i≤Nz

hyi,z,

then

hz(x) < f(x) + ε/2.
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From min{a, b} = 1
2

(
a + b − |a − b|

)
and Step 1 it follows inductively that for every

δ > 0 there exists a polynomial pδ,z ∈ P(K → R) with ‖hz − pδ,z‖ < δ.

For z ∈ K let Vz :=
⋂Nz

i=1 Vyi,z, then Vz is open and z ∈ Vz and, therefore the family

{ Vz | z ∈ K } is an open covering of K and by compactness of K there exists N ∈ N

points z1, z2, . . . , zN with

K ⊆
N⋃

i=1

Vzi
.

Furthermore, for all z ∈ K,

hz(x) > f(x) − ε/2 for all x ∈ Vz.

Define

h := max
1≤i≤N

hzi
,

then

‖f − h‖ < ε/2.

It remains to show that there exists a polynomial p ∈ P(K → R) with ‖h − p‖ < ε/2.

Let therefore δ := ε
4

and chose pδ,zi
∈ P(K → R) such that ‖hzi

− pδ,zi
‖ < δ, then

∥
∥
∥
∥
h − max

1≤i≤N
pδ,zi

∥
∥
∥
∥

< δ =
ε

4
.

Because max{a, b} = 1
2
(a + b + |a − b|) it follows inductively from Step 1 that there

exists p ∈ P(K → R) with ∥
∥
∥
∥

max
1≤i≤N

pδ,zi
− p

∥
∥
∥
∥

< ε/4.

Using the triangular inequality for norms this implies

‖h − p‖ < ε/2.

This completes Step 2 and the triangular inequality gives the overall desired result

‖f − p‖ < ε,

which holds for any arbitrarily small ε > 0 and corresponding p ∈ P(K → R). qed

2006-10-04/115/IN00/2211 69



S. Trenn: Quantitative analysis of neural networks as universal function approximators

B.3.2 Non-ε-denseness of PN (K → R) in C(K → R)

It suffices to show the assertion for K = [−1, 1], because any function in one variable

can be viewed as a function in more than one variable, which does not depend on the

other variables. If it is not possible to approximate a function C([−1, 1] → R) it will

not be possible to approximate a function f ∈ C(K → R) for K = [−1, 1]n0 for n0 > 1.

Let N ∈ N and ε > 0, the aim is to construct a function f ∈ C(K → R), which can

not be approximated with accuracy ε by any polynomial p ∈ PN(K → R) with degree

N .

Let x0, x1, . . . , xN ∈ [−1, 1] be pairwise distinct points. The function f , which will be

constructed, will have the property f(xi) = 0 for all i ∈ {0, . . . , N}. To achieve an

accuracy of ε the approximation polynomial must therefore fulfill |p(xi)| ≤ ε, i.e.

p ∈ { q ∈ P(K → R) | ∃ y0, y1, . . . , yN ∈ [−ε, ε] : q(xi) = yi for all i ∈ {0, . . . , N} } .

Clearly, for y := (y0, y1, . . . , yN) ∈ [−ε, ε]N+1,

qy(x) =
N∑

i=0

yi

N∏

k=0
k 6=i

x − xk

xi − xk

fulfills qy(xi) = yi for all i ∈ {0, . . . , N} and it is furthermore the only polynomial of

degree N with this property, because otherwise the difference between q and the other

polynomial would be again a polynomial of N (or smaller) and it would have N + 1

zeros, which would imply by the Fundamental Theorem of Algebra (see, e.g., [Amann

& Escher 2001a, Kor. I.8.18]) that the difference is the zero polynomial. From the

definition of qy it follows that the function

[−ε, ε]N+1 × [−1, 1] → R, (y, x) 7→ qy(x)

is continuous on the compact set [−ε, ε]N × [−1, 1] and hence is bounded [Amann &

Escher 2001a, Kor. 3.7.]. Let B ∈ R be such a bound, then

|p(x)| ≤ B ∀x ∈ [−1, 1]

for all polynomials p ∈ PN(K → R) which approximates f with accuracy ε. One pos-

sible definition of f ∈ C(K → R), which can not be approximated by any polynomial
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with accuracy ε, is

f : [−1, 1] → R, x 7→







0, x /∈ (x0, x1),

x−x0

x1−x0
2(B + 2ε) x ∈

(
x0,

x0+x1

2

)
,

B + 2ε x = x0+x1

2
,

x1−x
x1−x0

2(B + 2ε) x ∈
(

x0+x1

2
, x1

)
,

which is continuous and for x∗ = x0+x1

2
fulfills f(x∗) = B + 2ε. All polynomials p with

∣
∣p(xi) − f(xi)| ≤ ε for all i = 0, . . . , N , are bounded by B and therefore

∣
∣f(x∗) − p(x∗)

∣
∣ ≥ 2ε > ε,

which implies the assertion. qed

B.4 Proof of Theorem 3.2.1

A detailed proof is given in [Pinkus 1999], therefore only the main steps are summa-

rized here.

Let K1 = [−1, 1] and K = [−1, 1]n0 .

Step 1: It is shown that F(1,(1,·),σ,·)(K1 → R) is dense in C(K1 → R) for every

σ ∈ C∞(K1 → R)\P(K1 → R).

This step is Proposition 3.4 in [Pinkus 1999]. It is there shown that all polynomials

are contained in the closure of F(1,(1,·),σ,·)(K1 → R) and the claim then follows from

the denseness of all polynomials in C(K1 → R). This is done by first observing that if

σ ∈ C∞(K1 → R)\P(K1 → R) then there exists a θ0 ∈ K1 with

σ(k)(−θ0) 6= 0 for all k ∈ N.

Afterwards, it is observed that for all k ∈ N

t 7→ Dk
(
λ 7→ σ(λt − θ0)

)
(0) = t 7→ tkσ(k)(−θ0)

is an element of the closure of F(1,(1,·),σ,·)(K1 → R), which implies that all monomials
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and hence all polynomials are in the closure of F(1,(1,·),σ,·)(K1 → R).

Step 2: It is shown that F(1,(n0,·),σ,·)(K1 → R) is dense in C(K1 → R) for every

σ ∈ C(K1 → R)\P(K1 → R).

This step is Proposition 3.7 in [Pinkus 1999]. Instead of σ it is

σφ(t) =

∫

R

σ(t − y)φ(y)dy

considered, where φ ∈ C∞(R → R) for which { y ∈ R | φ(y) 6= 0 } is bounded. It

is σφ ∈ C∞ and it is shown that the closure of F(1,(n0,·),σφ,·)(K → R) is contained in

the closure of F(1,(n0,·),σ,·)(K → R). Seeking a contradiction assume that there exists a

k ∈ N for which t 7→ tk is not an element of the closure of F(1,(n0,·),σ,·)(K → R). This

would imply that σ
(k)
φ (−θ) = 0 for all φ and all θ, i.e. σφ is a polynomial of degree at

most k − 1. Since there exists a sequence (φn) such that σφn
converges uniformly to σ

and the space of polynomials of degree at most k − 1 is a closed subspace, σ would be

a polynomial of degree at most k − 1, too. This is a contradiction to the premise that

σ is not a polynomial.

Step 3: It is shown that F(1,(n0,·),σ,·)(K → R) is dense in C(K → R) for every

σ ∈ C(K → R)\P(K → R).

This step is a specialized version of Proposition 3.3 in [Pinkus 1999]. To prove that

the denseness in the one dimensional case carries over to the higher dimensional case,

so called ridge functions are considered. These are function of the form

F (x) = f(a · x) for all x ∈ Rn0

where f ∈ C(R → R) and a ∈ Rn0 , i.e. ridge functions are constant on the hyper

planes a · x = c ∈ R. It can be shown that the set of all ridge functions is dense

in C(K → R) (see, e.g., [Lin & Pinkus 1993]). Since ridge functions are actually

one dimensional continuous functions they can itself be approximated by functions in

F(1,(1,·),σ,·)(K1 → R). The concatenation of a ridge function and a one dimensional

function from F(1,(1,·),σ,·)(K1 → R) is a function in F(n0,(1,·),σ,·)(K → R) and therefore

the denseness is shown. qed
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B.5 Proof of Proposition 3.3.2

A detailed proof is given in [Pinkus 1999], therefore only the main aspects are summa-

rized.

Step 1: Construction of activation function σ.

This step is based on Proposition 6.3 in [Pinkus 1999].

Let { uk ∈ C∞([−1, 1] → R) | k ∈ N>0 } be a countable dense subset of C([−1, 1] →
R) (for example the set of all polynomials with rational coefficients). Let f be any

strictly monotone differentiable function with f(−∞) = 0 and f(∞) = 1, for example

the standard sigmoid function t 7→ 1
1+e−t . For m ∈ N>0 define σ on the interval

[4m, 4m + 2] by

σ(t + 4m + 1) = bm + cmt + dmum(t) for t ∈ [−1, 1],

where bm, cm, dm ∈ R, dm 6= 0, are chosen so that

(i) σ(4m) = f(4m) and

(ii) 0 < σ′(t) ≤ f ′(t) for all t ∈ [4m, 4m + 2].

This is always possible since f is strictly increasing and um
′ is bounded on [−1, 1] for

all m ∈ N>0. On the intervals [−4,−2] and [0, 2] chose σ to be linear and fulfilling

conditions (i) and (ii) together with the condition that the function t 7→ σ(t − 3) is

linearly independent of the function t 7→ σ(t − 1) on [−1, 1]. Finally fill the gaps

in the definition of σ such that σ is C∞ and σ(−∞) = 0. Since σ(t + 4m + 1) =

bm + cmt + dmum(t) it follows that there exists ak
1, a

k
2, a

k
3 ∈ R with

ak
1σ(t − 3) + ak

1σ(t − 1) + ak
3σ(t + 4m + 1) = um(t) for all t ∈ [−1, 1].

This property makes it possible for σ to approximate all continuous functions on [−1, 1]

arbitrarily well.

Step 2: Showing that a finite number of hidden units suffices to approximate arbi-

trarily well.

This step is Theorem 7.1 in [Pinkus 1999]. Assume first that K = [0, 1]n0, it is clear

that the result then also holds for K = [−1, 1]n0 by a simple coordinate transforma-

tion. It is a well known and famous result (Theorem of Kolmogorov, see, e.g., [Lorentz,
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Golitschek & Makovoz 1996, Thm. 17.1.1]), that there exists λ1, . . . , λn0
∈ R

>0
with

∑n0

i=1 λi ≤ 1 and strictly increasing φ1, . . . , φ2n0+1 ∈ C([0, 1] → [0, 1]) such that for

every continuous function f ∈ C(K → R) there exists a function g ∈ C([0, 1] → R)

such that

f(x1, x2, . . . , xn0
) =

2n0+1∑

i=1

g
(
λ1φi(x1) + λ2φi(x2) + . . . + λn0

φi(xn0
)
)
.

From Step 1 it follows that for every ε > 0 there exists a1, a2, a3 ∈ R and m ∈ N such

that
∣
∣
∣g(t) −

(
a1σ(t − 3) + a2σ(t + 1) + a3σ(t + m)

)∣∣
∣ <

ε

2(2n0 + 1)

for all t ∈ [0, 1]. Furthermore, for arbitrarily small δ > 0 there exists bi,1, bi,2, bi,3 ∈ R

and ri ∈ N such that

∣
∣
∣φi(xj) −

(
bi,1σ(xj − 3) + bi,2σ(xj + 1) + bi,3σ(xj + ri)

)
∣
∣
∣ < δ

for all xj ∈ [0, 1]. Choosing δ sufficiently small and substituting the equations into

each others yield an approximation of f with an accuracy of ε by the MLP function of

an MLP with two hidden layers and 4n + 3 units in the second layer and 2n + 1 units

in the first hidden layer. qed

B.6 Theoretically possible approximation accuracy for certain

function spaces

For n0 ∈ N define

Bn0
:=
{

x ∈ Rn0
∣
∣ x = (x1, x2, . . . , xn0

) with x1
1 + x2

2 + . . . xn0

2 ≤ 1
}

,

i.e. Bn0
is the compact unit ball with respect to the euclidian norm. Let the m-times

continuously differentiable function space Cm(Bn0
→ R) be equipped with the norm

‖f‖
Cm := ‖f‖ + ‖f ′‖ + . . . + ‖f (m)‖,

where all norms are the maximum norms on the corresponding function spaces (note

that the values of f ′ and of the higher derivatives are not real numbers anymore,
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see Subsection 4.1 for details). It is easy to see that ‖f‖
Cm is a norm, furthermore,

(
Cm(Bn0

→ R), ‖ · ‖
Cm

)
is a Banach space (see, e.g., [Werner 1995, Bsp. I.1.d]).

Proposition B.6.1. Let σ be the standard sigmoid activation function, i.e. σ(t) =
1

1+e−t , and define for n0, n1, m ∈ N
>0

E(n0, n1, m) := sup
f∈Cm(Bn0

→R)

inf
MLPs

(1,(n0,n1),σ,·)

‖fMLP − f‖
Cm ,

i.e. E(n0, n1, m) is the approximation capability of an MLP with n1 hidden units in

one layer for all functions in Cm(Bn0
→ R). If n0 ≥ 2 then there exists constants

C1, C2 ∈ R
≥0

, which are independent of n1, such that

C1(n1 log n1)
−m/n0 ≤ E(n0, n1, m) ≤ C2n1

−m/n0 .

This proposition is a specialization of Theorems 6.7 and 6.8 in [Pinkus 1999]. The

main statement is that it is possible for single hidden layer MLP with a fixed number

of hidden units to be ε-dense for arbitrarily small ε > 0, provided enough hidden units

are used and the functions which should be approximated are at least differentiable.

There seems to be no precise values for C1 and C2 and therefore these bounds can not

be used to calculate how many hidden units are necessary. Nevertheless the bounds

give a good orientation for the correlation between the number of hidden units and the

theoretically possible approximation accuracy. It is for example possible to calculate

how the accuracy increases if the number of hidden units is doubled.

B.7 Proof of Proposition 4.1.2

Step 1: Absolute convergence of P (x)

From (4.1.1) it follows inductively for k ∈ N that

∣
∣Ak(x,x, . . . ,x)

∣
∣ ≤ ‖Ak‖ ‖x‖k, (B.7.1)

hence
∞∑

k=0

∣
∣Ak(x,x, . . . ,x)

∣
∣ ≤

∞∑

k=0

‖Ak‖ ‖x‖k ≤
∞∑

k=0

‖Ak‖,
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because ‖x‖ ≤ 1 for all x ∈ K. Because lim supk→∞
k
√

‖Ak‖ < 1 the root criteria (see,

e.g., [Amann & Escher 2001a, Thm. II.8.5]) yields

∞∑

k=0

‖Ak‖ < ∞

and hence
∞∑

k=0

∣
∣Ak(x,x, . . . ,x)

∣
∣ < ∞.

Step 2: It is shown that DP (x) exists and is given by

DP (x)h =

∞∑

k=1

kAk(x, . . . ,x
︸ ︷︷ ︸

k − 1 times

,h).

Step 2a: It is shown that
∑∞

k=1 kAk(x, . . . ,x
︸ ︷︷ ︸

k − 1 times

,h) converges absolutely for all x,h∈K.

It is for all x,h ∈ K
∞∑

k=1

∣
∣kAk(x, . . . ,x

︸ ︷︷ ︸

k − 1 times

,h)
∣
∣ ≤

∞∑

k=1

k‖Ak‖

and

lim sup
k→∞

k
√

k‖Ak‖ = lim
k
√

k
︸︷︷︸

=1

lim sup
k→∞

k
√

‖Ak‖ < 1,

hence the root criteria yields that
∑∞

k=1 kAk(x, . . . ,x,h) converges absolutely.

Step 2b: It is shown that for all k ∈ N

Ak(x + h,x + h, . . . ,x + h) =
k∑

i=0

(

k

i

)

A(x, . . . ,x
︸ ︷︷ ︸

k times

, h, . . . ,h
︸ ︷︷ ︸

n − k times

).

The proof is done inductively. For k = 0 the claim is obviously fulfilled. From the

multilinearity of Ak it follows that

Ak(x + h,x + h, . . . ,x + h) = Ak(x + h,x + h, . . . ,x + h,x)

+ Ak(x + h,x + h, . . . ,x + h,h),
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Fixing the last entry of the both right hand side terms the induction hypothesis yields

Ak(x + h,x + h, . . . ,x + h, a) =
k−1∑

i=0

(

k − 1

i

)

Ak(x, . . . ,x
︸ ︷︷ ︸

k times

, h, . . . ,h
︸ ︷︷ ︸

n − 1 − k times

, a),

where either a = x or a = h. The symmetry of Ak yields

Ak(x + h,x + h, . . . ,x + h) = Ak(h,h, . . . ,h)

+

k−1∑

i=1

((

k − 1

i − 1

)

+

(

k − 1

i

))

Ak(x, . . . ,x
︸ ︷︷ ︸

i times

,h, . . . ,h
︸ ︷︷ ︸

k − i times

) + Ak(x,x, . . . ,x)

and since

(

k − 1

i − 1

)

+

(

k − 1

i

)

=

(

k

i

)

Step 2b is shown.

Step 2c: The formula for DP (x) is shown.

From Step 2b it follows that

P (x + h) =
∞∑

k=0

k∑

i=0

(

k

i

)

Ak(x, . . . ,x
︸ ︷︷ ︸

i times

,h, . . . ,h
︸ ︷︷ ︸

k − i times

)

and hence

P (x + h) − P (x) =

∞∑

k=1

kAk(x, . . . ,x
︸ ︷︷ ︸

k − 1 times

,h) +

∞∑

k=2

k−2∑

i=0

(

k

i

)

Ak(x, . . . ,x
︸ ︷︷ ︸

i times

,h, . . . ,h
︸ ︷︷ ︸

k − i times

).

Therefore, since ‖x‖ ≤ 1,

∣
∣
∣
∣

P (x + h) − P (x) −∑∞
k=1 kAk(x, . . . ,x,h)

‖h‖

∣
∣
∣
∣
≤ ‖h‖

∞∑

k=2

k−2∑

i=0

(

k

i

)

‖Ak‖ ‖h‖k−2−i

≤ ‖h‖
∞∑

k=2

‖Ak‖k(k − 1)(1 + ‖h‖)k.

Let

ρ := lim sup
k→∞

k
√

‖Ak‖k(k − 1) = lim sup
k→∞

k
√

‖Ak‖ lim
k→∞

k
√

k(k − 1)
︸ ︷︷ ︸

=1

< 1
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and chose ε > 0 such that ρ(1 + ε) < 1, then

lim sup
k→∞

k
√

‖Ak‖k(k − 1)(1 + ε)k < 1,

and hence

Cε :=

∞∑

k=2

‖Ak‖k(k − 1)(1 + ε)k < ∞.

Finally,

0 ≤ lim
h→0

∣
∣
∣
∣

P (x + h) − P (x) −∑∞
k=1 kAk(x, . . . ,x,h)

‖h‖

∣
∣
∣
∣
≤ lim

h→0
‖h‖Cε = 0,

which yields DP (x) =
∑∞

k=1 kAk(x, . . . ,x,h), hence Step 2 is finished.

Step 3: It is shown that DnP (0) = n!An.

Step 3a: It is shown that

DnP (x)(h1,h2, . . . ,hn) =

∞∑

k=n

k(k − 1) · · · (k − n + 1)Ak(x, . . . ,x
︸ ︷︷ ︸

k − n times

,h1,h2, . . . ,hn).

This step is proved inductively. The case n = 1 was already shown in Step 2. It is for

fixed h1, . . . ,hn+1 ∈ K

Dn+1P (x)(h1,h2, . . . ,hn+1) = D
(
DnP (x)(h1,h2, . . . ,hn)

)
(hn+1)

and Pn(x) := DnP (x)(h1, . . . ,hn) can be written as

Pn(x) =

∞∑

i=0

Bi(x, . . . ,x),

where Bi(x, . . . ,x) = (i + n)(i + n − 1) · · · (i + 1)An+i(x, . . . ,x,h1, . . . ,hn). Invoking

Step 2 again yields

DPn(x)(hn+1) =

∞∑

i=1

iBi(x, . . . ,x
︸ ︷︷ ︸

i − 1 times

,hn+1),
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hence by the symmetry of Ak for k ∈ N

Dn+1P (x)(h1,h2, . . . ,hn+1) =

∞∑

k=n+1

(k − n)Bk−n(x, . . . ,x,hn+1)

=
∞∑

k=n+1

k(k − 1) · · · (k − n + 1)(k − n)Ak(x, . . . ,x,h1,h2, . . . ,hn,hn+1).

Step 3b: The formula for DnP (0) is shown.

It is by Step 3a

DnP (0)(h1, . . . ,hn)

= n!An(h1, . . . ,hn) +
∞∑

k=n+1

k(k − 1) · · · (k − n + 1)Ak(0, . . . , 0,h1, . . . ,hn).

Because Ak is multilinear it is Ak(0, . . . , 0,h1, . . . ,hn) = 0 for all k ≥ n + 1. Hence

Step 3 is shown and Proposition 4.1.2 is proven. qed

B.8 Proof of Lemma 4.5.3

Let F : K → R be given by

F (x) = w1f1(x) + . . . + wmfm(x) + θ.

Since fi are nicely analytical they can be expressed through their Taylor series and

hence

F (x) =
∞∑

k=0

(

θk +
m∑

i=1

wi
Dkfi(0)

k!

)

xk,

where θ0x
0 := θ and θkx

k = 0 for all k ≥ 1, i.e. the Taylor series of F converges to F

on the whole of K. The function F is also nicely analytical, because
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lim sup
k→∞

k

√

‖DkF (0)‖
k!

= lim sup
k→∞

k

√

‖θk +
∑m

i=1 wiDkfi(0)‖
k!

≤ lim sup
k→∞

k

√
∑m

i=1 |wi|
∥
∥Dkfi(0)

∥
∥

k!

≤ max
i=1..m

lim sup
k→∞

k

√

m|wi|
∥
∥Dkfi(0)

∥
∥

k!

= max
i=1..m

lim
k→∞

k
√

m|wi|
︸ ︷︷ ︸

=1

lim sup
k→∞

k

√
∥
∥Dkfi(0)

∥
∥

k!
︸ ︷︷ ︸

<1

< 1.

It must be shown now that g(x) = σ
(
F (x)

)
can be written as

g(x) =

k∑

k=0

Ak(x, . . . ,x)

for some Ak ∈ Lk
sym(K → R), k ∈ N with lim supk→∞

k
√

‖Ak‖ < 1, because Proposi-

tion 4.1.2 would then yield that g is nicely analytical.

The following proof is similar to the proof in [Walter 2004, Satz 7.13], where classical

power series are considered. It is

g(x) =

k∑

k=0

ak

(
∞∑

i=0

DiF (0)xi

i!

)k

.

Claim: For every k ∈ N there exists Bk
i ∈ Lk

sym(K → R), i ∈ N with

(
∞∑

i=0

DiF (0)xi

i!

)k

=
∞∑

i=0

Bk
i (x, . . . ,x
︸ ︷︷ ︸

i times

)

and the right hand side series converges absolutely for all x ∈ K.

The claim is proved by induction. For k = 1 nothing is to show. Now

(
∞∑

i=0

DiF (0)xi

i!

)k+1

=
∞∑

i=0

Bk
i (x, . . . ,x)

(
∞∑

i=0

DiF (0)xi

i!

)

,
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where for fixed x ∈ K both series converge absolutely and hence the Cauchy product

∞∑

i=0

i∑

n=0

Bk
n(x, . . . ,x)

Di−nF (0)xi−n

(i − n)!

converges also absolutely (see, e.g., [Amann & Escher 2001a, Thm. II.8.11]). Let for

i ∈ N

B̃k+1
i (x1,x2, . . . ,xi) :=

i∑

n=0

Bk
n(x1, . . . ,xn)

Di−nF (0)(xn+1, . . . ,xi)

(i − n)!

then B̃k+1
i is multilinear. In general B̃k+1

i will not be symmetric, but it is possi-

ble to construct a symmetric and multilinear Bk+1
i from B̃k+1

i with Bk+1
i (x, . . . ,x) =

B̃k+1
i (x, . . . ,x), see [Dineen 1999, p. 6]. Therefore the claim is shown.

Let

Fabs(x) :=

∞∑

i=0

∥
∥DiF (0)

∥
∥

i!
xi,

then, compare (B.7.1), the absolute series of F (x) is bounded by Fabs

(
‖x‖

)
. By [Amann

& Escher 2001b, Thm. II.9.2] the (classical) power series Fabs converges absolutely for

all x ∈ R with

|x| < δ := 1/ lim sup
k→∞

i

√
∥
∥DiF (0)

∥
∥

i!
︸ ︷︷ ︸

>1

.

With the same inductive proof as above it can now be shown that for every k ∈ N

Fabs(x)k =

∞∑

i=0

bk
i x

i,

for some bk
i ∈ R

≥0
, i ∈ N, in particular

‖Bk
i ‖ ≤ bk

i ,

because the values for the bk
i are calculated from

∥
∥DiF (0)

∥
∥

i!
in the same way as the Bk

i

are calculated from DiF (0)
i!

. Let

gabs(x) :=
∞∑

k=0

∞∑

i=0

|ak|bk
i x

k =
∞∑

k=0

|ak|Fabs(x)k,

2006-10-04/115/IN00/2211 81



S. Trenn: Quantitative analysis of neural networks as universal function approximators

then gabs(x) converges for every x ∈ R with |x| < ρ, because σ(t) =
∑∞

k=0 akt
k converges

absolutely for all t ∈ R. Therefore, for all x ∈ K (i.e. ‖x‖ ≤ 1 < ρ),

∞∑

k=0

∞∑

i=0

∣
∣akB

k
i (x, . . . ,x)

∣
∣ ≤

∞∑

k=0

∞∑

i=0

|ak| bk
i ‖x‖i = gabs

(
‖x‖

)
< ∞,

hence, the summation order in

g(x) =

∞∑

k=0

∞∑

i=0

akB
k
i (x, . . . ,x)

can be changed, see, e.g., [Amann & Escher 2001a, Thm. II.8.10]:

g(x) =

∞∑

i=0

∞∑

k=0

akB
k
i (x, . . . ,x
︸ ︷︷ ︸

i times

),

which shows that

g(x) =

k∑

i=0

Ai(x,x, . . . ,x),

where Ai ∈ Li
sym(K → R) is given by

Ai(x1,x2, . . . ,xi) :=
∞∑

k=0

akB
k
i (x1,x2 . . . ,xi).

It remains to show that lim supk→∞
k
√

‖Ak‖ < 1.

The radius of convergence of the power series gabs is bigger than one, and therefore,

by [Amann & Escher 2001b, Thm. II.8.5],

lim sup
i→∞

i

√
√
√
√

∞∑

k=0

|ak|bk
i < 1.

From

‖Ai‖ ≤
∞∑

k=0

|ak|bk
i
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it follows that

lim sup
i→∞

i
√

‖Ai‖ < 1

and the proof of Lemma 4.5.3 is complete. qed

B.9 Proof of Lemma 4.5.4 and table of derivatives of the sigmoid

activation function

The proof of Lemma 4.5.4 is done by induction. It is easy to see that the assertion of

Lemma 4.5.4 is true for n = 1. Now, for all n ≥ 1,

σ(n+1) =
(
σ(n)

)′
=

n+1∑

i=1

ai,n (σi)′

=
n+1∑

i=1

i ai,n σi−1 σ′

=
n+1∑

i=1

i ai,n σi−1 (σ − σ2)

= a1,nσ +

n+1∑

i=2

(i ai,n − (i − 1) ai−1,n) σi + (n + 1) an+1,nσ
n+2.

It must be shown that for all n ∈ N
>0

(i) a1,n+1 = a1,n,

(ii) ai,n+1 = i ai,n − (i − 1) ai−1,n, for all i = 2, . . . , n + 1, and

(iii) an+2,n+1 = −(n + 1) an+1,n.

It is a1,n+1 = 1 = a1,n and

ai,ni − ai−1,n(i − 1) =

i∑

k=1

(−1)k+1i

(

i − 1

k − 1

)

kn −
i−1∑

k=1

(−1)k+1(i − 1)

(

i − 2

k − 1

)

kn

=
i−1∑

k=1

(−1)k+1kn+1

(

i

k

(

i − 1

k − 1

)

− i − 1

k

(

i − 2

k − 1

))

+ (−1)i+1

(

i − 1

i − 1

)

in+1
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for all n ∈ N and i ∈ {2, . . . , n + 1}. From

i

k

(

i − 1

k − 1

)

− i − 1

k

(

i − 2

k − 1

)

=
i!

(i − k)!k!
− (i − 1)!

(i − k − 1)!k!
=

i! − (i − k)(i − 1)!

(i − k)!k!

=
(i − 1)!

(i − k)!(k − 1)!
=

(

i − 1

k − 1

)

,

it follows that

ai,ni − ai−1,n(i − 1) =

i∑

k=1

(−1)k+1

(

i − 1

k − 1

)

kn+1 = ai,n+1,

and only (iii) remains to be shown.

Because a2,1 = −1, showing (iii) is equivalent to showing that

an+1,n = (−1)nn!,

i.e.

n! = (−1)n

n+1∑

k=1

(−1)(k+1)

(

n

k − 1

)

kn =

n∑

k=0

(−1)k

(

n

k

)

(−1 − k)n.

The latter follows from Ruiz identity [Ruiz 1996]:

n! =
n∑

k=0

(−1)k

(

n

k

)

(x − k)n, ∀x ∈ R.

qed
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n σ(n) σ(n)(0)

1 σ − σ2 1/4

2 σ − 3 σ2 + 2 σ3 0

3 σ − 7 σ2 + 12 σ3 − 6 σ4 -1/8

4 σ − 15 σ2 + 50 σ3 − 60 σ4 + 24 σ5 0

5 σ − 31 σ2 + 180 σ3 − 390 σ4 + 360 σ5 − 120 σ6 1/4

6 σ − 63 σ2 + 602 σ3 − 2100 σ4 + 3360 σ5 − 2520 σ6 + 720 σ7 0

7 σ−127 σ2 +1932 σ3−10206 σ4 +25200 σ5−31920 σ6 +20160 σ7−
5040 σ8

-17/16

8 σ−255 σ2+6050 σ3−46620 σ4+166824 σ5−317520 σ6+332640 σ7−
181440 σ8 + 40320 σ9

0

9 σ − 511 σ2 + 18660 σ3 − 204630 σ4 + 1020600 σ5 − 2739240 σ6 +
4233600 σ7 − 3780000 σ8 + 1814400 σ9 − 362880 σ10

31/4

10 σ − 1023 σ2 + 57002 σ3 − 874500 σ4 + 5921520 σ5 − 21538440 σ6 +
46070640 σ7 − 59875200 σ8 + 46569600 σ9 − 19958400 σ10 +
3628800 σ11

0

11 σ−2047 σ2+173052 σ3−3669006 σ4+33105600 σ5−158838240 σ6+
451725120 σ7 − 801496080 σ8 + 898128000 σ9 − 618710400 σ10 +
239500800 σ11 − 39916800 σ12

-691/8

12 σ − 4095 σ2 + 523250 σ3 − 15195180 σ4 + 180204024 σ5 −
1118557440 σ6 + 4115105280 σ7 − 9574044480 σ8 +
14495120640 σ9 − 14270256000 σ10 + 8821612800 σ11 −
3113510400 σ12 + 479001600 σ13

0

13 σ − 8191 σ2 + 1577940 σ3 − 62350470 σ4 + 961800840 σ5 −
7612364760 σ6 + 35517081600 σ7 − 105398092800 σ8 +
207048441600 σ9 − 273158645760 σ10 + 239740300800 σ11 −
134399865600 σ12 + 43589145600 σ13 − 6227020800 σ14

5461/4

14 σ − 16383 σ2 + 4750202 σ3 − 254135700 σ4 + 5058406080 σ5 −
50483192760 σ6 + 294293759760 σ7 − 1091804313600 σ8 +
2706620716800 σ9 − 4595022432000 σ10 + 5368729766400 σ11 −
4249941696000 σ12 + 2179457280000 σ13 − 653837184000 σ14 +
87178291200 σ15

0

15 σ − 32767 σ2 + 14283372 σ3 − 1030793406 σ4 + 26308573200 σ5 −
328191186960 σ6 + 2362955474880 σ7 − 10794490827120 σ8 +
33094020960000 σ9−70309810771200 σ10+105006251750400 σ11−
110055327782400 σ12 + 79332244992000 σ13 −
37486665216000 σ14 + 10461394944000 σ15 − 1307674368000 σ16

-929569/32

Table 4: Derivates of the sigmoid activation function given by σ(t) = 1
1+e−t .
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