ADDITION TO: THE QUASI-KRONECKER FORM FOR MATRIX
PENCILS

THOMAS BERGER* AND STEPHAN TRENNT

Abstract. We refine a result concerning singular matrix pencils and the Wong sequences. In our
recent paper [2] we have shown that the Wong sequences are sufficient to obtain a quasi-Kronecker
form. However, we applied the Wong sequences again on the regular part to decouple the regular
matrix pencil corresponding to the finite and infinite eigenvalues. The current paper is an addition
to [2] which shows that the decoupling of the regular part can be done already with the help of the
Wong sequences of the original matrix pencil. Furthermore, we show that the complete Kronecker
canonical form (KCF) can be obtained with the help of the Wong sequences.
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1. Introduction. In our recently published paper [2] we studied (singular) ma-
trix pencils

sE—A e K™ "], where K is Q, R or C
and showed how the Wong sequences [5]

Vo :=K", Vi1 := A"Y(EV;) €K,
Wy := {0}, Wig1 == E71(AW;) CK",

can be used to obtain a quasi-Kronecker form. The main feature of this quasi-
Kronecker form is that it decouples the DAE Ex(t) = Axz(t) + f(t) associated to
the matrix pencil sE — A into three parts: the underdetermined part, the regular part
and the overdetermined part. In particular, an explicit solution formula can be found
just using the Wong sequences [2, Thm. 3.2]. However, for this result we applied the
Wong sequences a second time (utilizing the results from [1]) to the regular part in
order to decouple it further into the ODE part (slow dynamics, finite eigenvalues)
and pure DAE part (fast dynamics, infinite eigenvalues). After the publication of [2]
we became aware that this decoupling can in fact be done already with the Wong
sequences of the original matrix pencil, hence we are able to present a refined version
of [2, Thms. 2.3 & 2.6]. Furthermore, the index of the regular part and the degrees of
the infinite elementary divisors can be determined directly from the Wong sequences
of the original matrix pencil (Proposition 2.4). We also show that the degrees of the
finite elementary divisors can be derived using a modified version of the second Wong
sequence (Proposition 2.6) and thus the complete Kronecker canonical form (KCF)
can be obtained directly from these Wong sequences.

For a detailed literature review, notation, mathematical preliminaries and further
motivation we refer the reader to our main paper [2].
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2. Main results.

THEOREM 2.1 (Quasi-Kronecker triangular form, refined version of [2, Thm. 2.3]).
Let sE — A € K"™*"[s] and consider the corresponding limits V* = (),cy Vi and
W* = U;en Wi of the Wong sequences. Choose any full rank matrices Py € K" "7,
R{ € K"ns RN ¢ Knnv  Q, € K™"e, P, ¢ Km*™mr R{ ¢ K™*™ RY ¢
K™m>xmy -y € K™*™Q gsuch that

im P =V NW*, im P, = EV* N AW*,
V*NW*) @imR{ = V*, (EV* N AW*) @im Ry = EV*,
V* @im RY = V* + W*, EV* @im RY = EV* + AW*,
V*+W*) @ imQ, = K", (EV* + AW") & im Qp = K™.

Then it holds that Tiian = [P1, R{, R, Q1] and Sirian = [P, Ry, RY, Qo)1 are in-
vertible and transform sE — A in quasi-Kronecker triangular form (QKTF)

(StrianETtrian 5 Strian ATtrian) =

Ep Ep; Epn FEpg Ap Ap; Apn Apg
0 E; Ejn EJQ 0 Ay Ajn AJQ
0 0 Ex Eng|’| 0 0 Ay  Ang ’
0 0 0 Eq 0 0 0 Ag

(2.1)

where

(i) Ep,Ap € K™P*"P 'mp < np, are such that rankc(AEp — Ap) = mp for all
A€ CU {0},

(ii)) Ey, Ay € K™ mjy = ny, and rankc(AE; — Ay) = ny for A = oo, i.e.,
E; is invertible,

(i) En,An € K™V my = ny, and rankc(AEy; — Ay) = ny for all A € C,
i.e., AN is invertible and A]_VlEN is milpotent,

(iv) Eq,Ag € K™eX"? mqg > ngq, are such that ranke(AEg — Ag) = ng for all
A e CU {oo}.

Proof. Step 1: We show (2.1) and (i) and (iv).
As shown in [2] we have the subspace inclusions

EV*NW*) C EV* N AW*, A(V*NW*) C EV* N AW*,

EV* = EV*, AV* C BV,
E(V* + W*) CEV* + AW*,  A(V* + W*) C EV* + AW*,
EK"™ C K™, AK" C K™,

These imply solvability of

EP, = PEp, AP, = Py Ap,
ER! = P,Ep; + RJEj, AR{ = PyAp; + RJA,, (2.2)
ERY = P,Epn + RJE n + RY En, ARY = PyApn + RJAjn + RY Ay, '

EQi = P,Epg + RJEjq + RY Eng + Q2Eg, AQi = PyApg + Ry Ajq + RY Ang + Q24q.

which is equivalent to (2.1). The properties (i) and (iv) immediately follow from [2,
Thm. 2.3] as the choice of bases here is more special.

2



Step 2: We show (EV* N AW*) @ im ER{ = EV*.

As im R{ C V* it follows that (EV* N AW*) +im ER{ C EV*. In order to show the
opposite inclusion let € EV*, then z = Ey; + Eys with y; € im Py, yo € im Ry.
Therefore, z € E(V* N W*) + im ER{ C (EV* N AW*) + im ER{. It remains to
show that the intersection is trivial. To this end let z € (EV* N AW*) Nim ER{,
ie., r = By with y € im R{. Further, z € EV* N AW* = E(V* N W*) (where the
subspace equality follows from [2, Lem. 4.4]) yields that x = Ez with z € V* N W*,
thus z — y € ker E C W*. Hence, since z € W*, it follows y € W* Nim R{ = {0}.

Step 3: We show EV* @ im ARY = EV* + AW*.
We immediately see that, since AV* C EV*,

EV* + AW* = EV* + AV + AW* = EV* + A(V* + W) =
EV* 4+ AV* +imRY) = EV* + AV* + Aim RY = EV* +im ARY.

In order to show that the intersection is trivial, let x € EV*Nim ARY , ie., v = Ay =
Ez with y € im RY and 2 € V*. Therefore, y € A~ (EV*) = V* and y € im R}, thus
y=0.

Step 4: We show mjy =ny; and my = ny.

By Step 2 and Step 3 we have that m; = rankg ER{ < ny and my = rankg AR{V <
ny. In order to see that we have equality in both cases observe that: ER{v = 0
for some v € K™ implies R{v € im R{ Nker E = {0}, since ker E C W*, and
hence v = 0 as R{ has full column rank; ARNv = 0 for some v € K"V implies
RMv € imRY Nnker A = {0}, since ker A C V*, and hence v = 0 as R} has full
column rank.

Step 5: We show that E; and Ay are invertible.

For the first, assume that there exists v € K" \ {0} such that Ejv = 0. Then

ER{v (22) P,Epjv and hence ER{v € im ER{ Nim P, Step 2 {0}, a contradiction to

full column rank of ER‘{ (as shown in Step 4). In order to show that Ay is invertible,
let v € K™ \ {0} such that Ayv = 0. Then ARNv (22) PyApnv + RJAynv and
hence ARYv € im ARY N im[Py, RY] Step 3
of ARY (as shown in Step 4).

{0}, a contradiction to full column rank

Step 6: It only remains to show that A]QIEN is nilpotent. In order to prove this we
will show that

Vi€ {0,....05 : V' oimRY (A EN) CV* + Wi . (2.3)

We show this by induction. For i = 0 the assertion is clear from the choice of RY.
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Suppose (2.3) holds for some i € {0,...,¢* —1}. Then

AWV* +im RY (A En)™) C AV* +im ARY (A En)'™!
(2.2) )
EV* +im(PApy + R§ Ayn + RY An) (AN En)'t

EV* + imPQApN(AX,IEN)iH + ingAJN(A;VlEN)i—H + im RéVEN(A;VlEN)Z

CEV* CEV~

N 1N

—
[ V)

.2) )
EV* +im(ERY — P,Epy — Ry Egn) (AN En)’

EV* +im ERY (AN En) 4+ im P,Epy (AN En)' +im Ry Eyn (AN EN)’

CEV* CEV*

N 1N

N

- (23)
EWV* +imRY (AN En)") C EV*+EWp_y CEV* + AW i 4

and hence

V* +im RY (AN En) ™ C ATHEVS + AWp- ;1)
CA N EV)+Wp_j1 +ker ACV* + Wy,
as ker A C V*. Furthermore, we have
V Nim RY (A En)™ € V* nim RY = {0}

and hence we have proved (2.3). Now (2.3) for i = ¢* yields RYY(Ay'En)* =0, and
since RY has full column rank we may conclude that (Ay'Ex)* = 0. O

REMARK 2.2. In Theorem 2.1 the special choice of Ry = ER{ and RY = ARY,
which is feasible due to Steps 2 and 3 of the proof of Theorem 2.1, yields that (2.1)
simplifies to

Ep 0 Epy FEpg Ap Apy 0 Apg
0 L., E;jn Ejg 0 Ay 0 Ajg
0 0 N Eng|’| 0O 0 Iny Ang ’
0 0 0 Eq 0 0 0 Ag

where N is nilpotent.

COROLLARY 2.3 (Quasi-Kronecker form (QKF), refined version of [2, Thm. 2.6]).
Using the notation from Theorem 2.1 the following equations are solvable for matrices
Fi, F3,G1,Ge, Hi, Hay K1, Ko, Ly, Lo, My, Ma of appropriate size:

0=[Fa]+ 1% 5 %]+ (%] B

Ay A A G G (2.42)
0= a2 ]+ 4] [8]+1%] 40
0= (Epq+ EpnF1 + EpjG1) + EpKi + KaEq (2.4D)
0= (Apg + ApnF1 + Ap;G1) + ApK:1 + K2 Aq '
0=FE;ny+FE;H + HyEN (24C)
0=Ayn+A;H + H)Apn ’
0= [EPJ,EPN] [(I) }?] + Ep[Ml,Ll] + [M2,L2] [EOJ EON] (2 4d)

0=[Aps,Apn] [} ] + Ap[My, L1] + [Mz, Lo] H)J AON]
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and for any such matrices let

I —My —Ly —K»7 1 I M Ly K;

. |0 I —Hy -G R 0 I Hy G
S — |:0 0 I 2 F22:| Striam T := Ttrian |:0 0 Il Fll :| .

0 0 0 I 00 o0 I

Then S and T are invertible and put sE — A in quasi-Kronecker form (QKF)
Ep 0 0 0 Ap 0 0 0

{lo E 0o o0 0 A; 0 0
SET.SAT) =\ | o 0 p ol o 0 4w ol (2.5)
0 0 0 Eo|l [0 0 0 A

where the block diagonal entries are the same as for the QKTF (2.1). In particular,
the QKF (without the transformation matrices S and T ) can be obtained with only the
Wong sequences (i.e., without solving (2.4)). Furthermore, the QKF (2.5) is unique
in the following sense
(Ea A) = (Elv A/) A (Epv AP) = (E;:, A/P)a (EJ, AI) = (Ef]v A{])a
(ENaAN) = (EE\MA?\/')? (EQaAQ) = (E/QaA/Q)a (26)

where B, Ap, E A B, Ay, Ep, A are the corresponding blocks of the QKF of
the matriz pencil sE' — A’.

Proof. We may choose A € C and M) of appropriate size such that My(Ax—AEn) =1
and, due to [2, Lem. 4.14], for the solvability of (2.4c) it then suffices to consider
solvability of

E; XAy —A;XEn =—Ejn — (AEjn — Ajn)MAEN,

which however is immediate from [2, Lem. 4.15]. Solvability of the other equa-
tions (2.4a), (2.4b), (2.4d) then follows as in the proof of Theorem 2.6 in [2].

Uniqueness in the sense of (2.6) can be established along lines similar to the proof of
Theorem 2.6 in [2]. O

PROPOSITION 2.4 (Index and infinite elementary divisors). Consider the Wong se-
quences V; and W; and the notation from Theorem 2.1. Let

v:i=min{ieN [V + W, =V "+ Wi }.

If v > 1, then v is the index of nilpotency of AR,IEN, i.e., (A]_VlEN)” =0 and
(AR,IEN)”’1 #£0. If v =0, then ny =0, i.e., the pencil sEn — Ay is absent in the
form (2.5).

Furthermore, if v > 1, let
Ai = dlm(V* +WZ'+1) *dlm(v* +WZ), 1= 0,1,2,... y

and for ¢ = Ag let 01,09,...,0. € N be given by

Oc—A; 141 = ... =0c_pn, =1, 1=1,2,3,....
Then (En,An) = (N,I) where N = diag(Ny,, Noy, ..., Ny,) and, for o € N,
0 1
Ne=| = " |eK™.
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Proof. As in the proof of [2, Thm. 2.9] we may without loss of generality consider
sE — A which is in KCF as in [2, Cor. 2.8]. The result is then immediate from the
observation

V¥ 4+ W; = K" x K™ x ker N* x {0}"<.
0

REMARK 2.5. From Proposition 2.4 and [2, Thm. 2.9] we see that the degrees of
the infinite elementary divisors and the row and column minimal indices (see e.g. [3,
4] for these notions) corresponding to a matriz pencil sSE — A € K™*"[s] are fully
determined by the Wong sequences corresponding to sE — A. It can also be seen from
the representation of the Wong sequences for a matriz pencil in KCF that the degrees of
the finite elementary divisors cannot be deduced from the Wong sequences. Howewver,
they can be derived from a modification of the second Wong sequence (similar to [1,
Def. 3.3]) as shown in the following.

PROPOSITION 2.6 (Finite elementary divisors). Consider the Wong sequences V;
and W; and the notation from Theorem 2.1. Let A\i,...,\; be the pairwise distinct
eigenvalues of sEy — Ay. Consider, for X € C, the sequence

W3 i={0}, W, = (A-\E)"H(EW}) CK™ (2.7)
Then we have, for all A € C, the characterization
(Vi=1,....k: X#£X;) < dmW* +W}) = dimW*. (2.8)
Consider now the notation from [2, Cor. 2.8] and reorder J,,(s), ..., JTp(s) as
TAS)s ey TN(8), TX(S)s ooy T2(8)s vy TNA8)seny TN (5) with p)Y <
P Pyy P Pry Pry pbk
...§p;\; forall j =1,... k, where
N1
s %‘jx _*J' . .
TR (s) =8l — eCrii”Pitls], j=1...,k, i=1,...,b;.
Py 1
)\.7
Let
Al = dim(W* + W) — dimW* + W), j=1,..k i=0,1,2,....
Then
Y by S .
pbij”fflJrl =... :pbij”f =14, Jg=1,...;k, 1=1,2,3,....

Proof. Similar to the proof of Proposition 2.4 we may consider sE — A in KCF. The
proof then follows from the observation that, for all A € C and i € N,

W* L WA = K*P x X (kerjijj ()\))i x K™ x {0}
i=1,.



and ker 7Y (\) = {0} for X # );. O
Py

REMARK 2.7 (Computation of the KCF). The results presented so far provide an
easy and fast algorithm for the computation of the KCF (without the corresponding
transformation matrices), cf. [2, Cor. 2.8]. This can be done in the following way:

(1) Compute the Wong sequences V; and W; (until the sequences terminate after
finitely many steps).

(i) Calculate the row and column minimal indices n; and e; using [2, Thm. 2.9],
which directly give the KCF of the singular part of the matrix pencil.

(iii) Calculate the degrees o; of the infinite elementary divisors using Proposi-
tion 2.4 yielding the KCF of the matriz pencil sEn — An .

(iv) Finally, compute the finite eigenvalues by computing the roots of det(AE; —
Ay) or using (2.8) and compute the degrees p; of the finite elementary divi-
sors (corresponding to the above computed eigenvalues) using Proposition 2.6.
This yields the Jordan canonical form of E;lA] completing the KCF.
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