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Abstract. We refine a result concerning singular matrix pencils and the Wong sequences. In our
recent paper [2] we have shown that the Wong sequences are sufficient to obtain a quasi-Kronecker
form. However, we applied the Wong sequences again on the regular part to decouple the regular
matrix pencil corresponding to the finite and infinite eigenvalues. The current paper is an addition
to [2] which shows that the decoupling of the regular part can be done already with the help of the
Wong sequences of the original matrix pencil. Furthermore, we show that the complete Kronecker
canonical form (KCF) can be obtained with the help of the Wong sequences.
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1. Introduction. In our recently published paper [2] we studied (singular) ma-
trix pencils

sE −A ∈ Km×n[s], where K is Q, R or C

and showed how the Wong sequences [5]

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,

W0 := {0}, Wi+1 := E−1(AWi) ⊆ Kn,

can be used to obtain a quasi-Kronecker form. The main feature of this quasi-
Kronecker form is that it decouples the DAE Eẋ(t) = Ax(t) + f(t) associated to
the matrix pencil sE−A into three parts: the underdetermined part, the regular part
and the overdetermined part. In particular, an explicit solution formula can be found
just using the Wong sequences [2, Thm. 3.2]. However, for this result we applied the
Wong sequences a second time (utilizing the results from [1]) to the regular part in
order to decouple it further into the ODE part (slow dynamics, finite eigenvalues)
and pure DAE part (fast dynamics, infinite eigenvalues). After the publication of [2]
we became aware that this decoupling can in fact be done already with the Wong
sequences of the original matrix pencil, hence we are able to present a refined version
of [2, Thms. 2.3 & 2.6]. Furthermore, the index of the regular part and the degrees of
the infinite elementary divisors can be determined directly from the Wong sequences
of the original matrix pencil (Proposition 2.4). We also show that the degrees of the
finite elementary divisors can be derived using a modified version of the second Wong
sequence (Proposition 2.6) and thus the complete Kronecker canonical form (KCF)
can be obtained directly from these Wong sequences.

For a detailed literature review, notation, mathematical preliminaries and further
motivation we refer the reader to our main paper [2].
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2. Main results.

Theorem 2.1 (Quasi-Kronecker triangular form, refined version of [2, Thm. 2.3]).
Let sE − A ∈ Km×n[s] and consider the corresponding limits V∗ :=

⋂

i∈N
Vi and

W∗ :=
⋃

i∈N
Wi of the Wong sequences. Choose any full rank matrices P1 ∈ Kn×nP ,

RJ
1 ∈ Kn×nJ , RN

1 ∈ Kn×nN , Q1 ∈ Kn×nQ , P2 ∈ Km×mP , RJ
2 ∈ Km×mJ , RN

2 ∈
Km×mN , Q2 ∈ Km×mQ such that

imP1 = V∗ ∩W∗, imP2 = EV∗ ∩ AW∗,

(V∗ ∩W∗)⊕ imRJ
1 = V∗, (EV∗ ∩ AW∗)⊕ imRJ

2 = EV∗,

V∗ ⊕ imRN
1 = V∗ +W∗, EV∗ ⊕ imRN

2 = EV∗ +AW∗,

(V∗ +W∗)⊕ imQ1 = Kn, (EV∗ +AW∗)⊕ imQ2 = Km.

Then it holds that Ttrian = [P1, R
J
1 , R

N
1 , Q1] and Strian = [P2, R

J
2 , R

N
2 , Q2]

−1 are in-
vertible and transform sE −A in quasi-Kronecker triangular form (QKTF)

(StrianETtrian, StrianATtrian) =












EP EPJ EPN EPQ

0 EJ EJN EJQ

0 0 EN ENQ

0 0 0 EQ






,







AP APJ APN APQ

0 AJ AJN AJQ

0 0 AN ANQ

0 0 0 AQ













, (2.1)

where

(i) EP , AP ∈ KmP×nP , mP < nP , are such that rankC(λEP −AP ) = mP for all
λ ∈ C ∪ {∞},

(ii) EJ , AJ ∈ KmJ×nJ , mJ = nJ , and rankC(λEJ − AJ ) = nJ for λ = ∞, i.e.,
EJ is invertible,

(iii) EN , AN ∈ KmN×nN , mN = nN , and rankC(λEJ − AJ ) = nN for all λ ∈ C,
i.e., AN is invertible and A−1

N EN is nilpotent,

(iv) EQ, AQ ∈ KmQ×nQ , mQ > nQ, are such that rankC(λEQ −AQ) = nQ for all
λ ∈ C ∪ {∞}.

Proof. Step 1 : We show (2.1) and (i) and (iv).
As shown in [2] we have the subspace inclusions

E(V∗ ∩W∗) ⊆ EV∗ ∩AW∗, A(V∗ ∩W∗) ⊆ EV∗ ∩ AW∗,

EV∗ = EV∗, AV∗ ⊆ EV∗,

E(V∗ +W∗) ⊆ EV∗ +AW∗, A(V∗ +W∗) ⊆ EV∗ +AW∗,

EKn ⊆ Km, AKn ⊆ Km.

These imply solvability of

EP1 = P2EP , AP1 = P2AP ,

ERJ
1 = P2EPJ +RJ

2EJ , ARJ
1 = P2APJ +RJ

2AJ ,

ERN
1 = P2EPN +RJ

2EJN +RN
2 EN , ARN

1 = P2APN +RJ
2AJN +RN

2 AN ,

EQ1 = P2EPQ +RJ
2EJQ +RN

2 ENQ +Q2EQ, AQ1 = P2APQ +RJ
2AJQ +RN

2 ANQ +Q2AQ.







(2.2)

which is equivalent to (2.1). The properties (i) and (iv) immediately follow from [2,
Thm. 2.3] as the choice of bases here is more special.
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Step 2 : We show (EV∗ ∩AW∗)⊕ imERJ
1 = EV∗.

As imRJ
1 ⊆ V∗ it follows that (EV∗ ∩AW∗) + imERJ

1 ⊆ EV∗. In order to show the
opposite inclusion let x ∈ EV∗, then x = Ey1 + Ey2 with y1 ∈ imP1, y2 ∈ imRJ

1 .
Therefore, x ∈ E(V∗ ∩ W∗) + imERJ

1 ⊆ (EV∗ ∩ AW∗) + imERJ
1 . It remains to

show that the intersection is trivial. To this end let x ∈ (EV∗ ∩ AW∗) ∩ imERJ
1 ,

i.e., x = Ey with y ∈ imRJ
1 . Further, x ∈ EV∗ ∩ AW∗ = E(V∗ ∩ W∗) (where the

subspace equality follows from [2, Lem. 4.4]) yields that x = Ez with z ∈ V∗ ∩ W∗,
thus z − y ∈ kerE ⊆ W∗. Hence, since z ∈ W∗, it follows y ∈ W∗ ∩ imRJ

1 = {0}.

Step 3 : We show EV∗ ⊕ imARN
1 = EV∗ +AW∗.

We immediately see that, since AV∗ ⊆ EV∗,

EV∗ +AW∗ = EV∗ +AV∗ +AW∗ = EV∗ +A(V∗ +W∗) =

EV∗ +A(V∗ + imRN
1 ) = EV∗ +AV∗ +A imRN

1 = EV∗ + imARN
1 .

In order to show that the intersection is trivial, let x ∈ EV∗∩ imARN
1 , i.e., x = Ay =

Ez with y ∈ imRN
1 and z ∈ V∗. Therefore, y ∈ A−1(EV∗) = V∗ and y ∈ imRN

1 , thus
y = 0.

Step 4 : We show mJ = nJ and mN = nN .
By Step 2 and Step 3 we have that mJ = rankK ERJ

1 ≤ nJ and mN = rankK ARN
1 ≤

nN . In order to see that we have equality in both cases observe that: ERJ
1 v = 0

for some v ∈ KnJ implies RJ
1 v ∈ imRJ

1 ∩ kerE = {0}, since kerE ⊆ W∗, and
hence v = 0 as RJ

1 has full column rank; ARN
1 v = 0 for some v ∈ KnN implies

RN
1 v ∈ imRN

1 ∩ kerA = {0}, since kerA ⊆ V∗, and hence v = 0 as RN
1 has full

column rank.

Step 5 : We show that EJ and AN are invertible.
For the first, assume that there exists v ∈ KnJ \ {0} such that EJv = 0. Then

ERJ
1 v

(2.2)
= P2EPJv and hence ERJ

1 v ∈ imERJ
1 ∩ imP2

Step 2
= {0}, a contradiction to

full column rank of ERJ
1 (as shown in Step 4). In order to show that AN is invertible,

let v ∈ KnN \ {0} such that ANv = 0. Then ARN
1 v

(2.2)
= P2APNv + RJ

2AJNv and

hence ARN
1 v ∈ imARN

1 ∩ im[P2, R
J
2 ]

Step 3
= {0}, a contradiction to full column rank

of ARN
1 (as shown in Step 4).

Step 6 : It only remains to show that A−1
N EN is nilpotent. In order to prove this we

will show that

∀ i ∈ {0, . . . , ℓ∗} : V∗ ⊕ imRN
1 (A−1

N EN )i ⊆ V∗ +Wℓ∗−i. (2.3)

We show this by induction. For i = 0 the assertion is clear from the choice of RN
1 .
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Suppose (2.3) holds for some i ∈ {0, . . . , ℓ∗ − 1}. Then

A(V∗ + imRN
1 (A−1

N EN )i+1) ⊆ AV∗ + imARN
1 (A−1

N EN )i+1

(2.2)

⊆ EV∗ + im(P2APN +RJ
2AJN + RN

2 AN )(A−1
N EN )i+1

⊆ EV∗ + imP2APN (A−1
N EN )i+1

︸ ︷︷ ︸

⊆EV∗

+ imRJ
2AJN (A−1

N EN )i+1

︸ ︷︷ ︸

⊆EV∗

+ imRN
2 EN (A−1

N EN )i

(2.2)

⊆ EV∗ + im(ERN
1 − P2EPN −RJ

2EJN )(A−1
N EN )i

⊆ EV∗ + imERN
1 (A−1

N EN )i + imP2EPN (A−1
N EN )i

︸ ︷︷ ︸

⊆EV∗

+ imRJ
2EJN (A−1

N EN )i
︸ ︷︷ ︸

⊆EV∗

⊆ E(V∗ + imRN
1 (A−1

N EN )i)
(2.3)

⊆ EV∗ + EWℓ∗−i ⊆ EV∗ +AWℓ∗−i−1

and hence

V∗ + imRN
1 (A−1

N EN )i+1 ⊆ A−1(EV∗ +AWℓ∗−i−1)

⊆ A−1(EV∗) +Wℓ∗−i−1 + kerA ⊆ V∗ +Wℓ∗−i−1,

as kerA ⊆ V∗. Furthermore, we have

V∗ ∩ imRN
1 (A−1

N EN )i+1 ⊆ V∗ ∩ imRN
1 = {0}

and hence we have proved (2.3). Now (2.3) for i = ℓ∗ yields RN
1 (A−1

N EN )ℓ
∗

= 0, and
since RN

1 has full column rank we may conclude that (A−1
N EN )ℓ

∗

= 0.

Remark 2.2. In Theorem 2.1 the special choice of RJ
2 = ERJ

1 and RN
2 = ARN

1 ,
which is feasible due to Steps 2 and 3 of the proof of Theorem 2.1, yields that (2.1)
simplifies to













EP 0 EPN EPQ

0 InJ
EJN EJQ

0 0 N ENQ

0 0 0 EQ






,







AP APJ 0 APQ

0 AJ 0 AJQ

0 0 InN
ANQ

0 0 0 AQ













,

where N is nilpotent.

Corollary 2.3 (Quasi-Kronecker form (QKF), refined version of [2, Thm. 2.6]).
Using the notation from Theorem 2.1 the following equations are solvable for matrices
F1, F2, G1, G2, H1, H2,K1,K2, L1, L2,M1,M2 of appropriate size:

0 =
[

EJQ

ENQ

]

+
[
EJ EJN

0 EN

] [
G1

F1

]
+
[
G2

F2

]
EQ

0 =
[

AJQ

ANQ

]

+
[
AJ AJN

0 AN

] [
G1

F1

]
+
[
G2

F2

]
AQ

(2.4a)

0 = (EPQ + EPNF1 + EPJG1) + EPK1 +K2EQ

0 = (APQ +APNF1 +APJG1) +APK1 +K2AQ
(2.4b)

0 = EJN + EJH1 +H2EN

0 = AJN +AJH1 +H2AN
(2.4c)

0 = [EPJ , EPN ]
[
I H1

0 I

]
+ EP [M1, L1] + [M2, L2]

[
EJ 0
0 EN

]

0 = [APJ , APN ]
[
I H1

0 I

]
+AP [M1, L1] + [M2, L2]

[
AJ 0
0 AN

] (2.4d)
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and for any such matrices let

S :=

[ I −M2 −L2 −K2

0 I −H2 −G2

0 0 I −F2

0 0 0 I

]−1

Strian, T := Ttrian

[ I M1 L1 K1

0 I H1 G1

0 0 I F1

0 0 0 I

]

.

Then S and T are invertible and put sE −A in quasi-Kronecker form (QKF)

(SET, SAT ) =













EP 0 0 0
0 EJ 0 0
0 0 EN 0
0 0 0 EQ






,







AP 0 0 0
0 AJ 0 0
0 0 AN 0
0 0 0 AQ













, (2.5)

where the block diagonal entries are the same as for the QKTF (2.1). In particular,
the QKF (without the transformation matrices S and T ) can be obtained with only the
Wong sequences (i.e., without solving (2.4)). Furthermore, the QKF (2.5) is unique
in the following sense

(E,A) ∼= (E′, A′) ⇔ (EP , AP ) ∼= (E′
P , A

′
P ), (EJ , AJ ) ∼= (E′

J , A
′
J),

(EN , AN ) ∼= (E′
N , A′

N ), (EQ, AQ) ∼= (E′
Q, A

′
Q), (2.6)

where E′
P , A

′
P , E

′
J , A

′
J , E

′
N , A′

N , E′
P , A

′
P are the corresponding blocks of the QKF of

the matrix pencil sE′ −A′.

Proof. We may choose λ ∈ C andMλ of appropriate size such thatMλ(AN−λEN ) = I

and, due to [2, Lem. 4.14], for the solvability of (2.4c) it then suffices to consider
solvability of

EJXAN −AJXEN = −EJN − (λEJN −AJN )MλEN ,

which however is immediate from [2, Lem. 4.15]. Solvability of the other equa-
tions (2.4a), (2.4b), (2.4d) then follows as in the proof of Theorem 2.6 in [2].

Uniqueness in the sense of (2.6) can be established along lines similar to the proof of
Theorem 2.6 in [2].

Proposition 2.4 (Index and infinite elementary divisors). Consider the Wong se-
quences Vi and Wi and the notation from Theorem 2.1. Let

ν := min { i ∈ N | V∗ +Wi = V∗ +Wi+1 } .

If ν ≥ 1, then ν is the index of nilpotency of A−1
N EN , i.e., (A−1

N EN )ν = 0 and
(A−1

N EN )ν−1 6= 0. If ν = 0, then nN = 0, i.e., the pencil sEN −AN is absent in the
form (2.5).

Furthermore, if ν ≥ 1, let

∆i := dim(V∗ +Wi+1)− dim(V∗ +Wi), i = 0, 1, 2, . . . ,

and for c = ∆0 let σ1, σ2, . . . , σc ∈ N be given by

σc−∆i−1+1 = . . . = σc−∆i
= i, i = 1, 2, 3, . . . .

Then (EN , AN ) ∼= (N, I) where N = diag(Nσ1
, Nσ2

, . . . , Nσc
) and, for σ ∈ N,

Nσ =









0 1
. . .

. . .

. . . 1
0









∈ Kσ×σ.
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Proof. As in the proof of [2, Thm. 2.9] we may without loss of generality consider
sE − A which is in KCF as in [2, Cor. 2.8]. The result is then immediate from the
observation

V∗ +Wi = KnP ×KnJ × kerN i × {0}nQ .

Remark 2.5. From Proposition 2.4 and [2, Thm. 2.9] we see that the degrees of
the infinite elementary divisors and the row and column minimal indices (see e.g. [3,
4] for these notions) corresponding to a matrix pencil sE − A ∈ Km×n[s] are fully
determined by the Wong sequences corresponding to sE−A. It can also be seen from
the representation of the Wong sequences for a matrix pencil in KCF that the degrees of
the finite elementary divisors cannot be deduced from the Wong sequences. However,
they can be derived from a modification of the second Wong sequence (similar to [1,
Def. 3.3]) as shown in the following.

Proposition 2.6 (Finite elementary divisors). Consider the Wong sequences Vi

and Wi and the notation from Theorem 2.1. Let λ1, . . . , λk be the pairwise distinct
eigenvalues of sEJ −AJ . Consider, for λ ∈ C, the sequence

Wλ
0 := {0}, Wλ

i+1 := (A− λE)−1(EWλ
i ) ⊆ Kn. (2.7)

Then we have, for all λ ∈ C, the characterization

(
∀ j = 1, . . . , k : λ 6= λj

)
⇐⇒ dim(W∗ +Wλ

1 ) = dimW∗. (2.8)

Consider now the notation from [2, Cor. 2.8] and reorder Jρ1
(s), . . . , Jρb

(s) as

J λ1

ρ
λ1

1

(s), . . . , J λ1

ρ
λ1

b1

(s), J λ2

ρ
λ2

1

(s), . . . , J λ2

ρ
λ2

b2

(s), . . . , J λk

ρ
λk
b1

(s),. . . , J λk

ρ
λk
bk

(s) with ρ
λj

1 ≤

. . . ≤ ρ
λj

bj
for all j = 1, . . . , k, where

J
λj

ρ
λj

i

(s) = sI −









λj 1
. . .

. . .

. . . 1
λj









∈ Cρ
λj
i

×ρ
λj
i [s], j = 1 . . . , k, i = 1, . . . , bj .

Let

∆j
i := dim(W∗ +W

λj

i+1)− dim(W∗ +W
λj

i ), j = 1, . . . , k, i = 0, 1, 2, . . . .

Then

ρ
λj

bj−∆j
i−1

+1
= . . . = ρ

λj

bj−∆j
i

= i, j = 1, . . . , k, i = 1, 2, 3, . . . .

Proof. Similar to the proof of Proposition 2.4 we may consider sE −A in KCF. The
proof then follows from the observation that, for all λ ∈ C and i ∈ N,

W∗ +Wλ
i = KnP ×





 ×

j=1,...,k

l=1,...,bk

(
kerJ

λj

ρ
λj

l

(λ)
)i







×KnN × {0}nQ
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and kerJ
λj

ρ
λj

l

(λ) = {0} for λ 6= λj .

Remark 2.7 (Computation of the KCF). The results presented so far provide an
easy and fast algorithm for the computation of the KCF (without the corresponding
transformation matrices), cf. [2, Cor. 2.8]. This can be done in the following way:

(i) Compute the Wong sequences Vi and Wi (until the sequences terminate after
finitely many steps).

(ii) Calculate the row and column minimal indices ηi and εi using [2, Thm. 2.9],
which directly give the KCF of the singular part of the matrix pencil.

(iii) Calculate the degrees σi of the infinite elementary divisors using Proposi-
tion 2.4 yielding the KCF of the matrix pencil sEN −AN .

(iv) Finally, compute the finite eigenvalues by computing the roots of det(λEJ −
AJ ) or using (2.8) and compute the degrees ρi of the finite elementary divi-
sors (corresponding to the above computed eigenvalues) using Proposition 2.6.
This yields the Jordan canonical form of E−1

J AJ completing the KCF.

REFERENCES

[1] Thomas Berger, Achim Ilchmann, and Stephan Trenn, The quasi-Weierstraß form for reg-

ular matrix pencils, Lin. Alg. Appl., 436 (2012), pp. 4052–4069.

[2] Thomas Berger and Stephan Trenn, The quasi-Kronecker form for matrix pencils, SIAM J.
Matrix. Anal. & Appl., 33 (2012), pp. 336–368.

[3] J.J. Loiseau, Some geometric considerations about the Kronecker normal form, Int. J. Control,
42 (1985), pp. 1411–1431.

[4] J.J. Loiseau, K. Özçaldiran, M. Malabre, and N. Karcanias, Feedback canonical forms of

singular systems, Kybernetika, 27 (1991), pp. 289–305.

[5] Kai-Tak Wong, The eigenvalue problem λTx+ Sx, J. Diff. Eqns., 16 (1974), pp. 270–280.

7


