ADDITION TO: THE QUASI-KRONECKER FORM FOR MATRIX
PENCILS

THOMAS BERGER* AND STEPHAN TRENNT

Abstract. We refine a result concerning singular matrix pencils and the Wong sequences. In our
recent paper [2] we have shown that the Wong sequences are sufficient to obtain a quasi-Kronecker
form. However, we applied the Wong sequences again on the regular part to decouple the regular
matrix pencil corresponding to the finite and infinite eigenvalues. The current paper is an addition
to [2] which shows that the decoupling of the regular part can be done already with the help of the
Wong sequences of the original matrix pencil. Furthermore, we show that the complete Kronecker
canonical form (KCF) can be obtained with the help of the Wong sequences.
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1. Introduction. In our recently published paper [2] we studied (singular) ma-
trix pencils

sE— A e K™ "[s], where Kis Q, R or C
and showed how the Wong sequences [5]

YV, = K", Vig1:= A7(EV;) CK",
Wy = {0}, Wis1 = E71(AW;) CK",

can be used to obtain a quasi-Kronecker form; where MS := { Mz e K™ |z € S }
for some matrix M € K™*" denotes the image of a subspace S C K" under M
and M~18 := {2 € K" | Mz € S } denotes the preimage of a subspace S C K™
under M. The main feature of the quasi-Kronecker form is that it decouples the DAE
Ei(t) = Ax(t) + f(t) associated to the matrix pencil sE — A into three parts: the
underdetermined part, the regular part and the overdetermined part. In particular,
an explicit solution formula can be found just using the Wong sequences [2, Thm. 3.2].
However, for this result we applied the Wong sequences a second time (utilizing the
results from [1]) to the regular part in order to decouple it further into the ODE
part (slow dynamics, finite eigenvalues) and pure DAE part (fast dynamics, infinite
eigenvalues). After the publication of [2] we became aware that this decoupling can in
fact be done already with the Wong sequences of the original matrix pencil, hence we
are able to present a refined version of [2, Thms. 2.3 & 2.6]. Furthermore, the index of
the regular part and the degrees of the infinite elementary divisors can be determined
directly from the Wong sequences of the original matrix pencil (Proposition 2.4). We
also show that the degrees of the finite elementary divisors can be derived using a
modified version of the second Wong sequence (Proposition 2.6) and thus the complete
Kronecker canonical form (KCF) can be obtained directly from these Wong sequences.
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For a detailed literature review, notation, mathematical preliminaries and further
motivation we refer the reader to our main paper [2].

2. Main results.

THEOREM 2.1 (Quasi-Kronecker triangular form, refined version of [2, Thm. 2.3]).
Let sE — A € K"*"[s| and consider the corresponding limits V* = (). Vi and
W* i= U;en Wi of the Wong sequences. Choose any full rank matrices P € K"*"?,
R{ € Ky RN ¢ K Q) € KW™ne, P, € Km*me R ¢ K™*ms RY ¢
Km>xmn = Qq € K™*™e gych that

im P, = V' NW*, im P, = EV* N AW*,

V*NW*) @im R = V*, (EV* N AW*) @ im Ry = EV*,
V*@imRY = V* + W*, EV* @im RY = EV* + AW*,

V' +W") eim@, =K", (EV* + AW") @im Q2 = K™.

Then it holds that Tivian = [P, R{, RN, Q1] and Sirian = [Pa, Ry, RY , Q2] are in-
vertible and transform sE — A into quasi-Kronecker triangular form (QKTF)

(Strian ETtrian 5 Strian ATtrian) =

Ep Ep; Epn Epg Ap Ap; Apn Apo
0 Ejy Ejn EJQ 0 Ay Ajn AJQ
0 0 Ev Eng|l’|0 0 Ay Awol |’
0 0 0 Eq 0 0 0 Ag

(2.1)

where

(i) Ep,Ap € K™PX"P 'mp < np, are such that rankc(AEp — Ap) = mp for all
A € CU{o0},
(ii) Ey,A; € K™ m; = ny, and rankc(AE; — Ay) = ny for A = oo, i.c.,
E; is invertible,
(iii)) En, Ay € K™N*"N iy = ny, and rankc(AEy — An) = ny for all A € C,
i.e., Ay is invertible and A;\,lEN is milpotent,
(iv) Eq,Aq € K™e*"e 'mqg > ng, are such that rankc(AEg — Aq) = ng for all
A€ CU{o0}.
Proof. Step 1: We show (2.1) and (i) and (iv).
As shown in [2, p. 340], we have the subspace inclusions AV* C EV* and EW* C AW*
and from these it follows that
EV NW*) C EV* N AW*, AV NW*) C EV* N AW,

EV* = EV*, AV* C EV*,
E(V*+W*) CEV* + AW*,  A(V* + W*) C EV* + AW*,
EK" C K™, AK™ C K™,
These inclusions imply solvability of
EP,=P,Ep, AP,=P,Ap,
ER{=P,Ep; + RJE,, AR{=P,Ap; + RJ Ay, (2.2)
ERN=P,Epy + R{E ;N + RY Ey, ARY=PyApy + Ry Ajn + Ry Aw, '

EQ,=PyEpq+R) E;g+RY Enot+Q2Eqg, AQ1=PyApg+Ry A g +RY Angt+QaAg.
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which is equivalent to (2.1). The properties (i) and (iv) immediately follow from [2,
Thm. 2.3] as the choice of bases here is more special.

Step 2: We show (EV* N AW*) @ im ER{ = EV*.
Asim R{ C V* it follows that (EV*NAW*)+im ER{ C EV*. Invoking EW* C AW*,
the opposite inclusion is immediate from

EV*=EB(V'NnW*) @imR{) C E(V* N W*) +im ER{ C (EV* + AW*) +im ER;.

It remains to show that the intersection is trivial. To this end let € (EV* N AW*)N
im ER{, ie., z = By with y € im R{. Further, z € EV* N AW* = E(V* N W¥)
(where the subspace equality follows from [2, Lem. 4.4]) and this yields that x = Ez
with z € V* N W* thus z —y € ker E C W*. Hence, since z € W*, it follows
y €W Nim R{ = {0}.

Step 3: We show EV* @im ARY = EV* + AW*.
We immediately see that, since AV* C EV*,

EV* + AW* = EV* + AV* + AW* = EV* + A(V* + W) =
EV* + AV* +im RY) = EV* + AV* + Aim RY = EV* +im ARY.

In order to show that the intersection is trivial, let x € EV*Nim ARY , ie., v = Ay =
Ez with y € im RY and z € V*. Therefore, y € A7 (EV*) = V* and y € im Ry, thus
y=0.

Step 4: We show my =ny and my = ny.

By Step 2 and Step 3 we have that m; = rank ER{ < ny and my = rank ARY < ny.
In order to see that we have equality in both cases observe that: ER{v = 0 for some
v € K" implies R{v € im R{ Nker E = {0}, since ker E C W*, and hence v = 0 as Ry
has full column rank; ARYv = 0 for some v € K™ implies RYv € im RY Nker A =
{0}, since ker A C V*, and hence v = 0 as RY has full column rank.

Step 5: We show that E; and Ay are invertible.

For the first, assume that there exists v € K" \ {0} such that EFjv = 0. Then
ER{v 22) P, Ep v and hence ER{v € im ER{Nim P, Step 2 {0}, a contradiction with
the fact that ER{ has full column rank (as shown in Step 4). In order to show that
Ay is invertible, let v € K"~ \ {0} be such that Ayv = 0. Then ARNv 22) P2Apyv+

Ry Aynv and hence ARYv € im ARY N im[P,, Ry Step 8 {0}, a contradiction with
the fact that ARY has full column rank (as shown in Step 4).

Step 6: It only remains to show that AElEN is nilpotent.
In order to prove this we will show that, for /* as in [2, (2.1)],

Vie{0,....0°): V*@imRY (AN En)" CV* +We . (2.3)

We show this by induction. For i = 0 the assertion is clear from the choice of RY.
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Suppose (2.3) holds for some i € {0,...,¢* —1}. Then

AWV +im RY (A En)™™) C AV* +im ARY (A En)™™!
(2.2 )
EV* 4+ im(PyApy + R'QJAJN + RéVAN)(A&lEN)ZJrl

EV* +im PyApn (AN En) ™ +im Ry AN (AN En) ™ +im RY Ex (A EN)’

CEV* CEV~

N 1N

DN

(2.2)

EV* +im(ERY — P,Epy — Ry Egn) (AN En)’
EV* +im ERY (AN EN) +im P, Epy (AN En)' +im Ry Ejn (AN EN)°

CEV* CEV*

N 1N

N

- (2:3)
E(WV* +imRY(AV'EN)) C EV* 4+ EWp_; CEV* + AWy
and hence

V* +im RY (A En)"™™ C ATHEV* + AW )
CA Y EV) 4+ Wizt SV + Wit
Furthermore, we have
VNnim RY (A En)™ CV* nim RY = {0}

and hence we have proved (2.3). Now (2.3) for i = ¢* yields RY (Ay'En)* =0, and
since RY has full column rank we may conclude that (Ay'En)’ = 0. O

REMARK 2.2. In Theorem 2.1 the special choice of Ry = ER{ and RY = ARY,
which is feasible due to Steps 2 and 3 of the proof of Theorem 2.1, yields that (2.1)
simplifies to

Ep 0 FEpn Epg Ap Ap; 0  Apg
0 L., Ejn Ejg 0 Ay 0 AJQ
0 0 N Ewo|l’|0 0 I, Avo||’
0 0 0 Eo| |0 0 0 A

where N is nilpotent.

COROLLARY 2.3 (Quasi-Kronecker form (QKF), refined version of [2, Thm. 2.6]).
Using the notation from Theorem 2.1 the following equations are solvable for matrices
Fy,F3,G1,Ga, Hy, Hey K1, Ko, L1, Lo, My, M> of appropriate size:

0=[Fa]+ 1% 5 %]+ (%) B

Asq Ay Ajn G1 G2 (2.43)
0= A0 ]+ [V 4 T8]+ (%] 40
0= (Epg+ EpnFy + Ep;G1)+ EpK1 + K2 Eq (2.4D)
0= (Apg + ApnF1 + Ap;G1) + ApK; + K3 Aq '
0=FE;n+FE;H1+ HEpN (2.4¢)
0=A;n +A;H, + Hy AN ’
0= (Bros Eonl [ 0] 4 BoD L+ DT (5 2]

0=[Aps, Apn] [ ] + Ap[My, Ly + [Ma, Lo] [ 5 4, ]
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and for any such matrices let

I —My; —Ly —Ko7~ ! I M Li K
0 I —-Hy -G — 0 I H G

S |:0 0 I 2 7F§ :| Striana T := Ttrian |:0 0 [1 Fll :|
0 0 0 I o0 0 I

Then S and T are invertible and transform sE — A into quasi-Kronecker form (QKF)

Ep 0 0 0] [4p 0 0 0
(o E; 0 o0 0 Ay 0 0

(SEr.SAT = | | o 5 ol o o oAy ol (2.5)
0 0 0 Eol [0 0 0 Ag

where the block diagonal entries are the same as for the QKTF (2.1). In particular,
the QKF (without the transformation matrices S and T') can be obtained with only the
Wong sequences (i.e., without solving (2.4)). Furthermore, the QKF (2.5) is unique
in the following sense

(B, A) = (B A') & (Ep,Ap) = (Ep,Ap), (Ej,As) = (E), A)),
(En,An) = (Ey, Ay), (Eq,Aq) = (Eg, Ag), (2.6)
where Ep, A'p, B, A By, A\ Ep, Ay are the corresponding blocks of the QKF of
the matriz pencil sE' — A’.

Proof. We may choose A € C and M), of appropriate size such that M)(Ay—AEN) =1
and, due to [2, Lem. 4.14], for the solvability of (2.4c) it then suffices to consider
solvability of

E; XAy —A;XEny =—Ejn — (AEjNn — Ajn)MyEy,

which however is immediate from [2, Lem. 4.15]. Solvability of the other equa-
tions (2.4a), (2.4b), (2.4d) then follows as in the proof of Theorem 2.6 in [2].

Uniqueness in the sense of (2.6) can be established along lines similar to the proof of
Theorem 2.6 in [2]. O

PROPOSITION 2.4 (Index and infinite elementary divisors). Consider the Wong se-
quences V; and W; and the notation from Theorem 2.1. Let

vi=min{ i eN | V' +W, =V "+ W, }.
If v > 1, then v is the index of nilpotency of AJ_\,lEN, i.e., (AJ_VlEN)V = 0 and
(Aj\,lEN)"’1 #0. If v =0, then ny =0, i.e., the pencil sEy — An is absent in the
form (2.5).
Furthermore, if v > 1, let

Then A;_1 > A; fori=1,2,...,v and, for c = Ag, let the numbers o1,03,...,0, € N
be given by



where in case of A;_1 = A; the respective index range is empty.

Then (En,An) = (N,I) where N = diag(Ny,, Ngy, ..., Ny, ) and, for o € N,

N, = c Kox7,
o
0

Proof. As in the proof of [2, Thm. 2.9] we may assume, without loss of generality,
that sE — A is in KCF as in [2, Cor. 2.8]. Decomposing the Wong sequences into the
four parts corresponding to each type of blocks, that is

Vi =V x V! x VN x v oW = WP x W x W x we,

and supposing that sEp —Ap, sE;—A;=sl—J,sExn—An =sN—1 and sEg—Ag
are in KCF, we find that:

(i) ij = A;l(imEp) = AL'K" = K" = VP =K"? for all i > 0.
(i) V/ = J 1KY = K" = V/ =K" for all i > 0.
(iii) V¥ =im N and VY, = NV = VN =im N’ for all i > 0.

)

(iv) For the derivation of VQ, we assume for a moment that sEg — Ag consists
only of one block, that is sEg — Ag = Q,(s) =s[° 7 %] = [, L o] for some

n € N. If n = 0 then by definition ViQ =0 = {0} for all i > 1. Otherwise we

have
n. X o 0 n+1
dJy e K7: <O)<y>€K }

:{QS‘EK” ‘%1:0},

VP = A5l (im Eq) = { z e K"

and, iteratively, V;* = {2z € K" |21 =... =2; =0 }. In particular, V? =
{0}" For the general case, denote Wlth Nmax € N the maximal size of the
9, (s) blocks in the KCF of sEg — Ag. Then the above argument applied to
each block in parallel yields V¥ = {0}"<.

The above yields that
V=K x K" x {0}"~ x {0}"<.

Now observe that:

(i) WY =ker N and WY, = N} (W) = WN =ker N for all i > 0.

(i) W2 = ker Eg = {0} = WZ = {0} for all i > 0.
The assertion of the proposition is then immediate from

V* 4+ W, = K" x K" x ker N* x {0}"2, i >0.
|

REMARK 2.5. From Proposition 2.4 and [2, Thm. 2.9] we see that the degrees of
the infinite elementary divisors and the row and column minimal indices (see e.g. [3,

6



4] for these notions) corresponding to a matriz pencil sSE — A € K™*"[s] are fully
determined by the Wong sequences corresponding to sE — A. It can also be seen from
the representation of the Wong sequences for a matriz pencil in KCF that the degrees of
the finite elementary divisors cannot be deduced from the Wong sequences. However,
they can be derived from a modification of the second Wong sequence (similar to [1,
Def. 3.3]) as shown in the following.

PROPOSITION 2.6 (Finite elementary divisors). Consider the Wong sequences V; and
W; and the notation from Theorem 2.1. Denote with o(sEj—Ay) = {1, A2,..., A} C
C, the set of the k € N distinct (generalized) eigenvalues of sEj; — Ay. Consider, for
A € C, the sequence

W3 = {0}, WA, :=(A-AE)"{(EW}) CK™ (2.7)
Then we have, for all A € C, the characterization
AN¢o(sEy—Ay) < W) CW* (2.8)

Consider now the notation from [2, Cor. 2.8] and reorder J,, (s), ..., Jp,(s) as
TN (8), - j;;l,l(s), T2, (), - j;b;z(s), ijl’jk(s),..., jp’\b’;,k(s) with p1 j <
e Spuy g forall g =1,... k, where

SRR

TN (s)=s[—| = | eCraXrils], j=1...k i=1,...,b;.

Pi,j

Let
Al = dim(W* + W) — dimW* + W), j=1,...k i=0,1,2,....
Then A) =b;, A > A and

pb_j*Az,1+1,j = .. :,ObjiAzﬂj =1, J= 1,...,k, 1=1,2,3,....

Proof. Similar to the proof of Proposition 2.4 we may consider sE — A in KCF. Then
W* =K" x {0} x K™ x {0}.

The proof now follows from the observation that, for all A € C and i € N,
W W) =K x [ X (kerZ (V)" | x K™ x {0}"@

and ker 757 (\) = {0} for A # ;. O

REMARK 2.7 (Jordan canonical form). In a case of a pencil sI — A, the following
simplifications can be made in Proposition 2.6: W* = {0}, and hence W2 = ker(A —
M)t Then (2.8) becomes the classical eigenvalue definition

A is an eigenvalue of A <= ker(A — \I) # {0},
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Furthermore,
AJ = dimker(A — \;I)™ — dimker(A — \1)7,

which is the well known formula for the number of Jordan blocks of size i+1 or greater
corresponding to the eigenvalue \; of A.

REMARK 2.8 (Determination of the KCF). The results presented so far show that
the KCF of a pencil sE — A (without the corresponding transformation matrices) is
completely determined by the Wong sequences:

(i) The row and column minimal indices 1; and &; are given by [2, Thm. 2.9],
which directly give the KCF of the singular part of the matriz pencil.

(i) The degrees o; of the infinite elementary divisors are given by Proposition 2.4
yielding the KCF of the matriz pencil sEn — Ap.

(iii) Finally, the finite eigenvalues can be determined by deriving the roots of
det(AE; — Ay) or using (2.8), and the degrees p; of the finite elementary di-
visors (corresponding to the above eigenvalues) are given by Proposition 2.6.
This yields the Jordan canonical form of EJ_lAJ completing the KCF.
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