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Abstract. We refine a result concerning singular matrix pencils and the Wong sequences. In our
recent paper [2] we have shown that the Wong sequences are sufficient to obtain a quasi-Kronecker
form. However, we applied the Wong sequences again on the regular part to decouple the regular
matrix pencil corresponding to the finite and infinite eigenvalues. The current paper is an addition
to [2] which shows that the decoupling of the regular part can be done already with the help of the
Wong sequences of the original matrix pencil. Furthermore, we show that the complete Kronecker
canonical form (KCF) can be obtained with the help of the Wong sequences.
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1. Introduction. In our recently published paper [2] we studied (singular) ma-
trix pencils

sE −A ∈ Km×n[s], where K is Q, R or C

and showed how the Wong sequences [5]

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,
W0 := {0}, Wi+1 := E−1(AWi) ⊆ Kn,

can be used to obtain a quasi-Kronecker form; where MS := { Mx ∈ Km | x ∈ S }
for some matrix M ∈ Km×n denotes the image of a subspace S ⊆ Kn under M
and M−1S := { x ∈ Kn | Mx ∈ S } denotes the preimage of a subspace S ⊆ Km
under M . The main feature of the quasi-Kronecker form is that it decouples the DAE
Eẋ(t) = Ax(t) + f(t) associated to the matrix pencil sE − A into three parts: the
underdetermined part, the regular part and the overdetermined part. In particular,
an explicit solution formula can be found just using the Wong sequences [2, Thm. 3.2].
However, for this result we applied the Wong sequences a second time (utilizing the
results from [1]) to the regular part in order to decouple it further into the ODE
part (slow dynamics, finite eigenvalues) and pure DAE part (fast dynamics, infinite
eigenvalues). After the publication of [2] we became aware that this decoupling can in
fact be done already with the Wong sequences of the original matrix pencil, hence we
are able to present a refined version of [2, Thms. 2.3 & 2.6]. Furthermore, the index of
the regular part and the degrees of the infinite elementary divisors can be determined
directly from the Wong sequences of the original matrix pencil (Proposition 2.4). We
also show that the degrees of the finite elementary divisors can be derived using a
modified version of the second Wong sequence (Proposition 2.6) and thus the complete
Kronecker canonical form (KCF) can be obtained directly from these Wong sequences.
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For a detailed literature review, notation, mathematical preliminaries and further
motivation we refer the reader to our main paper [2].

2. Main results.

Theorem 2.1 (Quasi-Kronecker triangular form, refined version of [2, Thm. 2.3]).
Let sE − A ∈ Km×n[s] and consider the corresponding limits V∗ :=

⋂
i∈N Vi and

W∗ :=
⋃
i∈NWi of the Wong sequences. Choose any full rank matrices P1 ∈ Kn×nP ,

RJ1 ∈ Kn×nJ , RN1 ∈ Kn×nN , Q1 ∈ Kn×nQ , P2 ∈ Km×mP , RJ2 ∈ Km×mJ , RN2 ∈
Km×mN , Q2 ∈ Km×mQ such that

imP1 = V∗ ∩W∗, imP2 = EV∗ ∩AW∗,
(V∗ ∩W∗)⊕ imRJ1 = V∗, (EV∗ ∩AW∗)⊕ imRJ2 = EV∗,

V∗ ⊕ imRN1 = V∗ +W∗, EV∗ ⊕ imRN2 = EV∗ +AW∗,
(V∗ +W∗)⊕ imQ1 = Kn, (EV∗ +AW∗)⊕ imQ2 = Km.

Then it holds that Ttrian = [P1, R
J
1 , R

N
1 , Q1] and Strian = [P2, R

J
2 , R

N
2 , Q2]−1 are in-

vertible and transform sE −A into quasi-Kronecker triangular form (QKTF)

(StrianETtrian, StrianATtrian) =

EP EPJ EPN EPQ
0 EJ EJN EJQ
0 0 EN ENQ
0 0 0 EQ

 ,

AP APJ APN APQ
0 AJ AJN AJQ
0 0 AN ANQ
0 0 0 AQ


 , (2.1)

where

(i) EP , AP ∈ KmP×nP , mP < nP , are such that rankC(λEP −AP ) = mP for all
λ ∈ C ∪ {∞},

(ii) EJ , AJ ∈ KmJ×nJ , mJ = nJ , and rankC(λEJ − AJ) = nJ for λ = ∞, i.e.,
EJ is invertible,

(iii) EN , AN ∈ KmN×nN , mN = nN , and rankC(λEN − AN ) = nN for all λ ∈ C,
i.e., AN is invertible and A−1

N EN is nilpotent,

(iv) EQ, AQ ∈ KmQ×nQ , mQ > nQ, are such that rankC(λEQ −AQ) = nQ for all
λ ∈ C ∪ {∞}.

Proof. Step 1 : We show (2.1) and (i) and (iv).
As shown in [2, p. 340], we have the subspace inclusions AV∗ ⊆ EV∗ and EW∗ ⊆ AW∗
and from these it follows that

E(V∗ ∩W∗) ⊆ EV∗ ∩AW∗, A(V∗ ∩W∗) ⊆ EV∗ ∩AW∗,
EV∗ = EV∗, AV∗ ⊆ EV∗,

E(V∗ +W∗) ⊆ EV∗ +AW∗, A(V∗ +W∗) ⊆ EV∗ +AW∗,
EKn ⊆ Km, AKn ⊆ Km.

These inclusions imply solvability of

EP1=P2EP , AP1=P2AP ,

ERJ1=P2EPJ +RJ2EJ , ARJ1=P2APJ +RJ2AJ ,

ERN1 =P2EPN +RJ2EJN +RN2 EN , ARN1 =P2APN +RJ2AJN +RN2 AN ,

EQ1=P2EPQ+RJ2EJQ+RN2 ENQ+Q2EQ, AQ1=P2APQ+RJ2AJQ+RN2 ANQ+Q2AQ.

 (2.2)
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which is equivalent to (2.1). The properties (i) and (iv) immediately follow from [2,
Thm. 2.3] as the choice of bases here is more special.

Step 2 : We show (EV∗ ∩AW∗)⊕ imERJ1 = EV∗.
As imRJ1 ⊆ V∗ it follows that (EV∗∩AW∗)+imERJ1 ⊆ EV∗. Invoking EW∗ ⊆ AW∗,
the opposite inclusion is immediate from

EV∗ = E((V∗ ∩W∗)⊕ imRJ1 ) ⊆ E(V∗ ∩W∗) + imERJ1 ⊆ (EV∗ +AW∗) + imERJ1 .

It remains to show that the intersection is trivial. To this end let x ∈ (EV∗ ∩AW∗)∩
imERJ1 , i.e., x = Ey with y ∈ imRJ1 . Further, x ∈ EV∗ ∩ AW∗ = E(V∗ ∩ W∗)
(where the subspace equality follows from [2, Lem. 4.4]) and this yields that x = Ez
with z ∈ V∗ ∩ W∗, thus z − y ∈ kerE ⊆ W∗. Hence, since z ∈ W∗, it follows
y ∈ W∗ ∩ imRJ1 = {0}.

Step 3 : We show EV∗ ⊕ imARN1 = EV∗ +AW∗.
We immediately see that, since AV∗ ⊆ EV∗,

EV∗ +AW∗ = EV∗ +AV∗ +AW∗ = EV∗ +A(V∗ +W∗) =

EV∗ +A(V∗ + imRN1 ) = EV∗ +AV∗ +A imRN1 = EV∗ + imARN1 .

In order to show that the intersection is trivial, let x ∈ EV∗∩ imARN1 , i.e., x = Ay =
Ez with y ∈ imRN1 and z ∈ V∗. Therefore, y ∈ A−1(EV∗) = V∗ and y ∈ imRN1 , thus
y = 0.

Step 4 : We show mJ = nJ and mN = nN .
By Step 2 and Step 3 we have that mJ = rankERJ1 ≤ nJ and mN = rankARN1 ≤ nN .
In order to see that we have equality in both cases observe that: ERJ1 v = 0 for some
v ∈ KnJ implies RJ1 v ∈ imRJ1 ∩kerE = {0}, since kerE ⊆ W∗, and hence v = 0 as RJ1
has full column rank; ARN1 v = 0 for some v ∈ KnN implies RN1 v ∈ imRN1 ∩ kerA =
{0}, since kerA ⊆ V∗, and hence v = 0 as RN1 has full column rank.

Step 5 : We show that EJ and AN are invertible.
For the first, assume that there exists v ∈ KnJ \ {0} such that EJv = 0. Then

ERJ1 v
(2.2)
= P2EPJv and hence ERJ1 v ∈ imERJ1∩imP2

Step 2
= {0}, a contradiction with

the fact that ERJ1 has full column rank (as shown in Step 4). In order to show that

AN is invertible, let v ∈ KnN \{0} be such that ANv = 0. Then ARN1 v
(2.2)
= P2APNv+

RJ2AJNv and hence ARN1 v ∈ imARN1 ∩ im[P2, R
J
2 ]

Step 3
= {0}, a contradiction with

the fact that ARN1 has full column rank (as shown in Step 4).

Step 6 : It only remains to show that A−1
N EN is nilpotent.

In order to prove this we will show that, for `∗ as in [2, (2.1)],

∀ i ∈ {0, . . . , `∗} : V∗ ⊕ imRN1 (A−1
N EN )i ⊆ V∗ +W`∗−i. (2.3)

We show this by induction. For i = 0 the assertion is clear from the choice of RN1 .
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Suppose (2.3) holds for some i ∈ {0, . . . , `∗ − 1}. Then

A(V∗ + imRN1 (A−1
N EN )i+1) ⊆ AV∗ + imARN1 (A−1

N EN )i+1

(2.2)

⊆ EV∗ + im(P2APN +RJ2AJN +RN2 AN )(A−1
N EN )i+1

⊆ EV∗ + imP2APN (A−1
N EN )i+1︸ ︷︷ ︸

⊆EV∗

+ imRJ2AJN (A−1
N EN )i+1︸ ︷︷ ︸

⊆EV∗

+ imRN2 EN (A−1
N EN )i

(2.2)

⊆ EV∗ + im(ERN1 − P2EPN −RJ2EJN )(A−1
N EN )i

⊆ EV∗ + imERN1 (A−1
N EN )i + imP2EPN (A−1

N EN )i︸ ︷︷ ︸
⊆EV∗

+ imRJ2EJN (A−1
N EN )i︸ ︷︷ ︸

⊆EV∗

⊆ E(V∗ + imRN1 (A−1
N EN )i)

(2.3)

⊆ EV∗ + EW`∗−i ⊆ EV∗ +AW`∗−i−1

and hence

V∗ + imRN1 (A−1
N EN )i+1 ⊆ A−1(EV∗ +AW`∗−i−1)

⊆ A−1(EV∗) +W`∗−i−1 ⊆ V∗ +W`∗−i−1.

Furthermore, we have

V∗ ∩ imRN1 (A−1
N EN )i+1 ⊆ V∗ ∩ imRN1 = {0}

and hence we have proved (2.3). Now (2.3) for i = `∗ yields RN1 (A−1
N EN )`

∗
= 0, and

since RN1 has full column rank we may conclude that (A−1
N EN )`

∗
= 0.

Remark 2.2. In Theorem 2.1 the special choice of RJ2 = ERJ1 and RN2 = ARN1 ,
which is feasible due to Steps 2 and 3 of the proof of Theorem 2.1, yields that (2.1)
simplifies to 


EP 0 EPN EPQ
0 InJ

EJN EJQ
0 0 N ENQ
0 0 0 EQ

 ,

AP APJ 0 APQ
0 AJ 0 AJQ
0 0 InN

ANQ
0 0 0 AQ


 ,

where N is nilpotent.

Corollary 2.3 (Quasi-Kronecker form (QKF), refined version of [2, Thm. 2.6]).
Using the notation from Theorem 2.1 the following equations are solvable for matrices
F1, F2, G1, G2, H1, H2,K1,K2, L1, L2,M1,M2 of appropriate size:

0 =
[
EJQ

ENQ

]
+
[
EJ EJN

0 EN

] [
G1

F1

]
+
[
G2

F2

]
EQ

0 =
[
AJQ

ANQ

]
+
[
AJ AJN

0 AN

] [
G1

F1

]
+
[
G2

F2

]
AQ

(2.4a)

0 = (EPQ + EPNF1 + EPJG1) + EPK1 +K2EQ
0 = (APQ +APNF1 +APJG1) +APK1 +K2AQ

(2.4b)

0 = EJN + EJH1 +H2EN
0 = AJN +AJH1 +H2AN

(2.4c)

0 = [EPJ , EPN ]
[
I H1

0 I

]
+ EP [M1, L1] + [M2, L2]

[
EJ 0
0 EN

]
0 = [APJ , APN ]

[
I H1

0 I

]
+AP [M1, L1] + [M2, L2]

[
AJ 0
0 AN

] (2.4d)
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and for any such matrices let

S :=

[ I −M2 −L2 −K2

0 I −H2 −G2

0 0 I −F2

0 0 0 I

]−1

Strian, T := Ttrian

[ I M1 L1 K1

0 I H1 G1

0 0 I F1

0 0 0 I

]
.

Then S and T are invertible and transform sE−A into quasi-Kronecker form (QKF)

(SET, SAT ) =



EP 0 0 0
0 EJ 0 0
0 0 EN 0
0 0 0 EQ

 ,

AP 0 0 0
0 AJ 0 0
0 0 AN 0
0 0 0 AQ


 , (2.5)

where the block diagonal entries are the same as for the QKTF (2.1). In particular,
the QKF (without the transformation matrices S and T ) can be obtained with only the
Wong sequences (i.e., without solving (2.4)). Furthermore, the QKF (2.5) is unique
in the following sense

(E,A) ∼= (E′, A′) ⇔ (EP , AP ) ∼= (E′P , A
′
P ), (EJ , AJ) ∼= (E′J , A

′
J),

(EN , AN ) ∼= (E′N , A
′
N ), (EQ, AQ) ∼= (E′Q, A

′
Q), (2.6)

where E′P , A
′
P , E

′
J , A

′
J , E

′
N , A

′
N , E

′
P , A

′
P are the corresponding blocks of the QKF of

the matrix pencil sE′ −A′.

Proof. We may choose λ ∈ C and Mλ of appropriate size such that Mλ(AN−λEN ) = I
and, due to [2, Lem. 4.14], for the solvability of (2.4c) it then suffices to consider
solvability of

EJXAN −AJXEN = −EJN − (λEJN −AJN )MλEN ,

which however is immediate from [2, Lem. 4.15]. Solvability of the other equa-
tions (2.4a), (2.4b), (2.4d) then follows as in the proof of Theorem 2.6 in [2].

Uniqueness in the sense of (2.6) can be established along lines similar to the proof of
Theorem 2.6 in [2].

Proposition 2.4 (Index and infinite elementary divisors). Consider the Wong se-
quences Vi and Wi and the notation from Theorem 2.1. Let

ν := min { i ∈ N | V∗ +Wi = V∗ +Wi+1 } .

If ν ≥ 1, then ν is the index of nilpotency of A−1
N EN , i.e., (A−1

N EN )ν = 0 and
(A−1

N EN )ν−1 6= 0. If ν = 0, then nN = 0, i.e., the pencil sEN − AN is absent in the
form (2.5).

Furthermore, if ν ≥ 1, let

∆i := dim(V∗ +Wi+1)− dim(V∗ +Wi) ≥ 0, i = 0, 1, 2, . . . ν.

Then ∆i−1 ≥ ∆i for i = 1, 2, . . . , ν and, for c = ∆0, let the numbers σ1, σ2, . . . , σc ∈ N
be given by

σc−∆i−1+1 = . . . = σc−∆i
= i, i = 1, 2, . . . , ν,
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where in case of ∆i−1 = ∆i the respective index range is empty.

Then (EN , AN ) ∼= (N, I) where N = diag(Nσ1 , Nσ2 , . . . , Nσc) and, for σ ∈ N,

Nσ =


0 1

. . .
. . .

. . . 1
0

 ∈ Kσ×σ.

Proof. As in the proof of [2, Thm. 2.9] we may assume, without loss of generality,
that sE −A is in KCF as in [2, Cor. 2.8]. Decomposing the Wong sequences into the
four parts corresponding to each type of blocks, that is

Vi = VPi × VJi × VNi × V
Q
i , Wi =WP

i ×WJ
i ×WN

i ×W
Q
i ,

and supposing that sEP −AP , sEJ−AJ = sI−J , sEN−AN = sN−I and sEQ−AQ
are in KCF, we find that:

(i) VP1 = A−1
P (imEP ) = A−1

P KnP = KnP =⇒ VPi = KnP for all i ≥ 0.

(ii) VJ1 = J−1KnJ = KnJ =⇒ VJi = KnJ for all i ≥ 0.

(iii) VN1 = imN and VNi+1 = NVNi =⇒ VNi = imN i for all i ≥ 0.

(iv) For the derivation of VQi , we assume for a moment that sEQ − AQ consists
only of one block, that is sEQ − AQ = Qη(s) = s [ 0 ··· 0

I ] − [ I
0 ··· 0 ] for some

η ∈ N. If η = 0 then by definition VQi = ∅ = {0}0 for all i > 1. Otherwise we
have

VQ1 = A−1
Q (imEQ) =

{
x ∈ Kη

∣∣∣∣ ∃ y ∈ Kη :

(
x
0

)
=

(
0
y

)
∈ Kη+1

}
= { x ∈ Kη | x1 = 0 } ,

and, iteratively, VQi = { x ∈ Kη | x1 = . . . = xi = 0 }. In particular, VQη =
{0}η. For the general case, denote with ηmax ∈ N the maximal size of the
Qη(s) blocks in the KCF of sEQ −AQ. Then the above argument applied to
each block in parallel yields VQηmax

= {0}nQ .

The above yields that

V∗ = KnP ×KnJ × {0}nN × {0}nQ .

Now observe that:

(i) WN
1 = kerN and WN

i+1 = N−1(WN
i ) =⇒ WN

i = kerN i for all i ≥ 0.

(ii) WQ
1 = kerEQ = {0} =⇒ WQ

i = {0}nQ for all i ≥ 0.

The assertion of the proposition is then immediate from

V∗ +Wi = KnP ×KnJ × kerN i × {0}nQ , i ≥ 0.

Remark 2.5. From Proposition 2.4 and [2, Thm. 2.9] we see that the degrees of
the infinite elementary divisors and the row and column minimal indices (see e.g. [3,

6



4] for these notions) corresponding to a matrix pencil sE − A ∈ Km×n[s] are fully
determined by the Wong sequences corresponding to sE −A. It can also be seen from
the representation of the Wong sequences for a matrix pencil in KCF that the degrees of
the finite elementary divisors cannot be deduced from the Wong sequences. However,
they can be derived from a modification of the second Wong sequence (similar to [1,
Def. 3.3]) as shown in the following.

Proposition 2.6 (Finite elementary divisors). Consider the Wong sequences Vi and
Wi and the notation from Theorem 2.1. Denote with σ(sEJ−AJ) = {λ1, λ2, . . . , λk}⊆
C, the set of the k ∈ N distinct (generalized) eigenvalues of sEJ −AJ . Consider, for
λ ∈ C, the sequence

Wλ
0 := {0}, Wλ

i+1 := (A− λE)−1(EWλ
i ) ⊆ Kn. (2.7)

Then we have, for all λ ∈ C, the characterization

λ /∈ σ(sEJ −AJ) ⇐⇒ Wλ
1 ⊆ W∗. (2.8)

Consider now the notation from [2, Cor. 2.8] and reorder Jρ1(s), . . . , Jρb(s) as
J λ1
ρ1,1(s), . . . , J λ1

ρb1,1
(s), J λ2

ρ1,2(s), . . . , J λ2
ρb2,2

(s), . . . , J λk
ρ1,k

(s),. . . , J λk
ρbk,k

(s) with ρ1,j ≤
. . . ≤ ρbj ,j for all j = 1, . . . , k, where

J λj
ρi,j (s) = sI −


λj 1

. . .
. . .

. . . 1
λj

 ∈ Cρi,j×ρi,j [s], j = 1 . . . , k, i = 1, . . . , bj .

Let

∆j
i := dim(W∗ +Wλj

i+1)− dim(W∗ +Wλj

i ), j = 1, . . . , k, i = 0, 1, 2, . . . .

Then ∆j
0 = bj, ∆j

i−1 ≥ ∆j
i and

ρbj−∆j
i−1+1,j = . . . = ρbj−∆j

i ,j
= i, j = 1, . . . , k, i = 1, 2, 3, . . . .

Proof. Similar to the proof of Proposition 2.4 we may consider sE−A in KCF. Then

W∗ = KnP × {0} ×KnN × {0}.

The proof now follows from the observation that, for all λ ∈ C and i ∈ N,

W∗ +Wλ
i = KnP ×

 ×
j=1,...,k

l=1,...,bk

(
kerJ λj

ρl,j
(λ)
)i
×KnN × {0}nQ

and kerJ λj
ρl,j (λ) = {0} for λ 6= λj .

Remark 2.7 (Jordan canonical form). In a case of a pencil sI − A, the following
simplifications can be made in Proposition 2.6: W∗ = {0}, and hence Wλ

i = ker(A−
λI)i. Then (2.8) becomes the classical eigenvalue definition

λ is an eigenvalue of A ⇐⇒ ker(A− λI) 6= {0},
7



Furthermore,

∆j
i = dim ker(A− λjI)i+1 − dim ker(A− λjI)i,

which is the well known formula for the number of Jordan blocks of size i+1 or greater
corresponding to the eigenvalue λj of A.

Remark 2.8 (Determination of the KCF). The results presented so far show that
the KCF of a pencil sE − A (without the corresponding transformation matrices) is
completely determined by the Wong sequences:

(i) The row and column minimal indices ηi and εi are given by [2, Thm. 2.9],
which directly give the KCF of the singular part of the matrix pencil.

(ii) The degrees σi of the infinite elementary divisors are given by Proposition 2.4
yielding the KCF of the matrix pencil sEN −AN .

(iii) Finally, the finite eigenvalues can be determined by deriving the roots of
det(λEJ −AJ) or using (2.8), and the degrees ρi of the finite elementary di-
visors (corresponding to the above eigenvalues) are given by Proposition 2.6.
This yields the Jordan canonical form of E−1

J AJ completing the KCF.
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