
Kalman controllability decompositions for differential-algebraic systems

Thomas Bergera, Stephan Trennb

aFachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
bFachbereich Mathematik, Technische Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

Abstract

We study linear differential-algebraic equations and investigate decompositions with respect to controllability prop-
erties. We show that the augmented Wong sequences can be exploited for a transformation of the system into a
Kalman controllability decomposition (KCD). The KCD decouples the system into a completely controllable part, an
uncontrollable part given by an ordinary differential equation and an inconsistent part, which is controllable in the
behavioral sense but contains no completely controllable part. This decomposition improves a known KCD from a
behavioral point of view. We conclude the paper with some features of the KCD in the case of regular systems.
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1. Introduction

We consider linear constant coefficient differential-algebraic equations (DAEs) of the form

Eẋ(t) = Ax(t)+Bu(t) (1)

where E,A∈Rl×n, B∈Rl×m. The set of system models given by (1) is denoted by Σl×n
m and we write (E,A,B)∈ Σl×n

m .
DAEs of the form (1) naturally occur when modeling dynamical systems subject to algebraic constraints; for a further
motivation we refer to [8, 10, 12] and the references therein. The DAE (E,A,B) is called regular if l = n and
det(sE−A) ∈ R[s] \ {0}; otherwise it is called singular. We stress at this point that our main result concerning the
Kalman controllability decomposition (KCD) holds for the regular as well as for the singular case.

There is a canonical equivalence notion for DAEs in Σl×n
m given by

(E,A,B)∼= (Ẽ, Ã, B̃) :⇐⇒ ∃S ∈GLl ,T ∈GLn : (SET,SAT,SB) = (Ẽ, Ã, B̃),

where GLk denotes the space of invertible real-valued k× k matrices; ∼=is also often called system equivalence, first

studied by Rosenbrock [13]. If we want to highlight the involved transformation matrices S and T we also write
S,T∼=

instead of ∼=. The desired KCD, presented later, is a special representative of the corresponding equivalence class
where controllability properties can easily be read off.

The function u : R→ Rm is usually called input of the system, although one should keep in mind, that in the
singular case u might be constrained and some of the state variables can play the role of an input.

The tuple (x,u) : R→ Rn×Rm is said to be a solution of (1) if, and only if, it belongs to the behavior of (1):

B(E,A,B) :=
{
(x,u) ∈W 1

loc(R→ Rn)×L 1
loc(R→ Rm)

∣∣ (x,u) satisfies (1) for almost all t ∈ R
}
,

where L 1
loc and W 1

loc denote the space of locally (Lebesgue) integrable or weakly differentiable functions with lo-
cally integrable derivatives (see [1, Chap. 1]), respectively. The equivalence of DAEs translates to an equivalence of
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solutions as follows:

(E,A,B)
S,T∼= (Ẽ, Ã, B̃) =⇒

[
(x,u) ∈B(E,A,B) ⇔ (T−1x,u) ∈B(Ẽ,Ã,B̃)

]
,

in particular the input is not altered.
Note that it is possible to consider a slightly larger solution space by only requiring that x ∈L 1

loc and Ex ∈W 1
loc,

see [3]; in particular, it is not necessary to assume that x is continuous. However, this leads to some technical
difficulties when studying (complete) controllability and therefore we restrict our attention to the above solution
concept.

In the present paper we are interested in a KCD for general DAEs of the form (1). Recall the well-known result
that for linear ordinary differential equations (ODEs) of the form

ẋ(t) = Ax(t)+Bu(t)

the KCD is given by

ż(t) =
[

A11 A12
0 A22

]
z(t)+

[
B1
0

]
u(t), (2)

where x 7→ T z is a suitable coordinate transformation such that the ODE ż1(t) = A11z1(t)+B1u(t) is controllable. In
particular, the KCD separates the ODE into a controllable and an uncontrollable part. At first glance, a satisfying
generalization of (2) is also available for DAEs (even in the singular case), see [5, Thm. 7.1] (which is based on a
result for the discrete time case in [2]): There exist invertible matrices S and T such that

(E,A,B)
S,T∼=
([

E11 E12
0 E22

]
,

[
A11 A12
0 A22

]
,

[
B1
0

])
,

where the DAE (E11,A11,B1) is completely controllable (see the forthcoming Definition 2.1) and the only reachable
state from the origin for the DAE (E22,A22,0) is the origin itself. Seemingly, we again have a decomposition into
a controllable and an uncontrollable part. However, in the behavioral approach (see e.g. [11]) the trivial DAE 0 = x
given by (0, I,0) is controllable (because any two trajectories can be concatenated within the behavior), but the above
KCD would only consist of the uncontrollable part. This is an unsatisfactory situation and is due to the fact, that
for DAEs (both regular and singular) certain states are inconsistent and it doesn’t really make sense to label those
controllable or uncontrollable. We therefore propose the following more detailed KCD:

(SET,SAT,SB) =

E11 E12 E13
0 E22 E23
0 0 E33

 ,
A11 A12 A13

0 A22 A23
0 0 A33

 ,
B1

0
0

 ,

where, as before, S and T are invertible matrices and the DAE given by (E11,A11,B1) is completely controllable.
Furthermore, E22 is invertible and the DAE (E33,A33,0) is such that it only has the trivial solution. Hence, we now
have the decomposition into a (completely) controllable part, a classical uncontrollable part (given by an ODE) and
an inconsistent part (which is behavioral controllable but contains no completely controllable part). We believe that
this KCD is much more adequate for the analysis of DAEs as it takes into account the special DAE feature of possible
inconsistent states which play a special role with respect to controllability. When restricting the attention to the case
of regular DAEs, we obtain a further decomposition of the completely controllable part into a classical controllable
part (given by a controllable ODE) and an instantaneously controllable part (corresponding to a controllable “pure”
DAE).

The paper is organized as follows: In Section 2 we introduce the concepts of complete and behavioral controlla-
bility considered in the present paper. We also recall the augmented Wong sequences as the crucial geometric tool
for our investigations and some connections of these sequences with the controllability concepts, the reachable space
and the space of consistent initial values. The KCD for singular (E,A,B) is proved in Section 3 and uniqueness of
the decomposition with respect to the equivalence ∼= is discussed. Finally, Section 4 is devoted to the case of regular
systems and some features of the KCD are highlighted. In particular, the connection between the augmented Wong
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sequences and the original Wong sequences (B = 0) is shown; this is also illustrated in Figure 1.

2. Controllability notions

We recall the concepts of complete controllability and controllability in the behavioral sense and their geometric
characterizations in terms of augmented Wong sequences. Our presentation follows mostly the survey [5].

Definition 2.1 (Controllability concepts). A system (E,A,B) ∈ Σl×n
m is called

(i) completely controllable if, and only if,

∀x0,x f ∈ Rn ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : x(0) = x0 ∧ x(t f ) = x f ,

i.e., it is possible to control the state x(·) from any given initial value x0 to any final value x f .

(ii) controllable in the behavioral sense if, and only if,

∀(x1,u1),(x2,u2) ∈B(E,A,B) ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : (x(t),u(t)) =

{
(x1(t),u1(t)), if t < 0,
(x2(t),u2(t)), if t > t f ,

i.e., it is possible to connect any two feasible trajectories via a third feasible trajectory.

Both controllability notions are equivalent for ODEs; however, for DAEs (singular as well as regular) complete
controllability is stronger than behavioral controllability as the latter does not require that the reachable space (see the
forthcoming Definition 2.3) is the whole space; it is defined within the context of the behavioral approach [11] and
hence respects the underlying algebraic constraints.

In order to geometrically characterize controllability, the augmented Wong sequences are an important tool (see [5]
and the references therein) and are defined as follows:

V 0
(E,A,B) := Rn, V i+1

(E,A,B) := A−1(EV i
(E,A,B)+ imB)⊆ Rn, V ∗(E,A,B) :=

⋂
i∈N0

V i
(E,A,B),

W 0
(E,A,B) := {0}, W i+1

(E,A,B) := E−1(AW i
(E,A,B)+ imB)⊆ Rn, W ∗

(E,A,B) :=
⋃

i∈N0

W i
(E,A,B).

The sequences (V i
(E,A,B))i∈N and (W i

(E,A,B))i∈N are called augmented Wong sequences since they are based on the
Wong sequences (B = 0) used in [4, 6, 7] and which have their origin in WONG [17] who was the first using both
sequences (with B = 0) for the analysis of matrix pencils.

The augmented Wong sequences allow a characterization of the controllability concepts as follows.

Lemma 2.2 (Geometric criteria for controllability [5]). Consider (E,A,B) ∈ Σl×n
m and the limits V ∗(E,A,B) and W ∗

(E,A,B)
of the augmented Wong sequences. Then (E,A,B) is

(a) completely controllable if, and only if, V ∗(E,A,B)∩W ∗
(E,A,B) = Rn;

(b) controllable in the behavioral sense if, and only if, V ∗(E,A,B) ⊆W ∗
(E,A,B).

Before we can state the Kalman controllability decomposition, we also need the notion of the reachable space
which is crucial for the proof of the decomposition.

Definition 2.3 (Reachable space, for details see [5]). For (E,A,B) ∈ Σl×n
m the reachable space is defined as

R(E,A,B) :=
{

x f ∈ Rn ∣∣ ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : x(0) = 0 ∧ x(t f ) = x f
}

Note that any reachable state x f ∈Rn can be reached from the origin in arbitrary time t f > 0 (i.e., in the definition
above “∃ t f > 0” can be replaced by “∀ t f > 0”).
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Remark 2.4. In [5] it is shown that R(E,A,B) = V ∗(E,A,B) ∩W ∗
(E,A,B), hence complete controllability can also be char-

acterized by the intuitive condition R(E,A,B) = Rn. Furthermore, it is proved in [5] that the space of consistent initial
values is given by V ∗(E,A,B), i.e.,

{
x0 ∈ Rn

∣∣ ∃(x,u) ∈B(E,A,B) : x(0) = x0
}
= V ∗(E,A,B).

3. Kalman controllability decomposition

In this section we present our main result about a generalized Kalman controllability decomposition (KCP) which
respects the special features of DAEs. In fact, this decoupling can be obtained form the augmented Wong sequences
of the original system, which also yield a simple procedure to obtain the basis transformation. In view of Remark
2.4, this basis transformation can intuitively be obtained from Lemma 2.2: the subspace V ∗(E,A,B)∩W ∗

(E,A,B) yields the
completely controllable part, any complement of V ∗(E,A,B) ∩W ∗

(E,A,B) in V ∗(E,A,B) yields an uncontrollable part (since
V ∗(E,A,B) ⊆W ∗

(E,A,B) is equivalent to V ∗(E,A,B)∩W ∗
(E,A,B) = V ∗(E,A,B)), and any complement of V ∗(E,A,B) yields a behavioral

controllable part that is not completely controllable (i.e., a subspace of inconsistent initial values).

Theorem 3.1 (Kalman controllability decomposition). Consider (E,A,B) ∈ Σl×n
m and the limits V ∗(E,A,B) and W ∗

(E,A,B)

of the augmented Wong sequences. Choose any full rank matrices R1 ∈Rn×n1 ,P1 ∈Rn×n2 ,Q1 ∈Rn×n3 ,R2 ∈Rl×l1 ,P2 ∈
Rl×l2 ,Q2 ∈ Rl×l3 such that

imR1 = V ∗(E,A,B)∩W ∗
(E,A,B), imR2 = (EV ∗(E,A,B)+ imB)∩ (AW ∗

(E,A,B)+ imB),

imR1⊕ imP1 = V ∗(E,A,B), imR2⊕ imP2 = EV ∗(E,A,B)+ imB,

im[R1,P1]⊕ imQ1 = Rn, im[R2,P2]⊕ imQ2 = Rl .

Then T := [R1,P1,Q1] ∈GLn and S := [R2,P2,Q2]
−1 ∈GLl transform (E,A,B) into KCD:

(E,A,B)
S,T∼=

E11 E12 E13
0 E22 E23
0 0 E33

 ,
A11 A12 A13

0 A22 A23
0 0 A33

 ,
B1

0
0

 (3)

where

(i) (E11,A11,B1) ∈ Σ
l1×n1
m with l1 = rk[E11,B1]≤ n1 +m is completely controllable,

(ii) (E22,A22,0) ∈ Σ
l2×n2
m with l2 = n2 and E22 is invertible,

(iii) (E33,A33,0) ∈ Σ
l3×n3
m with l3 ≥ n3 satisfies rkC(λE33−A33) = n3 for all λ ∈ C.

Proof. Step 1: First observe that the subspace inclusions

E(V ∗(E,A,B)∩W ∗
(E,A,B))⊆ (EV ∗(E,A,B)+ imB)∩ (AW ∗

(E,A,B)+ imB),

A(V ∗(E,A,B)∩W ∗
(E,A,B))⊆ (EV ∗(E,A,B)+ imB)∩ (AW ∗

(E,A,B)+ imB),

EV ∗(E,A,B) ⊆ EV ∗(E,A,B)+ imB,

AV ∗(E,A,B) ⊆ EV ∗(E,A,B)+ imB,

imply existence of E11, . . . ,E33 and A11, . . . ,A33 such that

ER1 = R2E11, AR1 = R2A11,
EP1 = R2E12 +P2E22, AP1 = R2A12 +P2A22,
EQ1 = R2E13 +P2E23 +Q2E33, AQ1 = R2A13 +P2A23 +Q2A33.

(4)

Since imB⊆ (EV ∗+ imB)∩ (AW ∗+ imB) = imR2, there exists B1 ∈ Rl1×m such that B = R2B1. All these relations
together yield the decomposition (3).
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Step 2: We show (i) by proceeding in several steps.
Step 2a: We show that (E11,A11,B1) is completely controllable.

By Remark 2.4 we have for the reachable space that

R(E,A,B) = V ∗(E,A,B)∩W ∗
(E,A,B) = imR1 = T (Rn1 ×{0}n2+n3).

Since any (z,u) ∈B(SET,SAT,SB) with z = (z>1 ,z
>
2 ,z
>
3 )
> ∈W 1

loc(R→ Rn) and z(0) = 0 satisfies

E11ż1(t)+E12ż2(t)+E13ż3(t) = A13z1(t)+A12z2(t)+A13z3(t)+B1u(t),

E22ż2(t)+E23ż3(t) = A22z2(t)+A23z3(t),

E33ż3(t) = A33z3(t),

the assumption that
∀ t ≥ 0 : z(t) ∈R(SET,SAT,SB) = T−1R(E,A,B) = Rn1 ×{0}n2+n3

leads to z2 ≡ 0 and z3 ≡ 0. This implies that

R(SET,SAT,SB) = R(E11,A11,B1)×{0}
n2+n3

and hence we find R(E11,A11,B1) = Rn1 , which according to Remark 2.4 is equivalent to (E11,A11,B1) ∈ Σ
l1×n1
m being

completely controllable.
Step 2b: We show E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB = (EV ∗(E,A,B)+ imB)∩ (AW ∗
(E,A,B)+ imB).

The inclusion “⊆” was already observed in Step 1. For “⊇” let x ∈ (EV ∗(E,A,B) + imB)∩ (AW ∗
(E,A,B) + imB), i.e.,

x = Ev+b1 = Aw+b2 for some v ∈ V ∗(E,A,B),w ∈W ∗
(E,A,B),b1,b2 ∈ imB. Then

v ∈ E−1{Aw+b2−b1} ⊆ E−1(AW ∗
(E,A,B)+ imB) = W ∗

(E,A,B).

Therefore, v ∈ V ∗(E,A,B)∩W ∗
(E,A,B) and hence x = Ev+b1 ∈ E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB.
Step 2c: We show that rk[E11,B1] = l1.

Since imR2E11 = imER1 = E(V ∗(E,A,B)∩W ∗
(E,A,B)) we find that

imR2[E11,B1] = E(V ∗(E,A,B)∩W ∗
(E,A,B))+ imB = imR2,

where the latter equality follows from Step 2b. Therefore, full column rank of R2 implies im[E11,B1] =Rl1 and hence
l1 = rk[E11,B1]≤ rkE11 + rkB1 ≤ n1 +m.

Step 3: We show (ii).
Step 3a: We show that

(
E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB
)
⊕ imEP1 = EV ∗(E,A,B)+ imB.

Clearly,

EV ∗(E,A,B)+ imB = E
(
(V ∗(E,A,B)∩W ∗

(E,A,B))⊕ imP1
)
+ imB = E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imEP1 + imB.

It remains to be shown that the intersection is trivial. To this end, let x ∈
(
E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB
)
∩ imEP1, i.e.,

x = Ey = Ev+b for some y ∈ imP1,v ∈ V ∗(E,A,B)∩W ∗
(E,A,B),b ∈ imB. Then E(y− v) = b and hence

y− v ∈ E−1{b} ⊆ E−1(imB) = W 1
(E,A,B) ⊆W ∗

(E,A,B).

This implies y ∈W ∗∩ imP1 = {0} and thus x = 0.
Step 3b: We show that l2 = n2.
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We have that

l2 = rkP2 = dim(EV ∗(E,A,B)+ imB)−dim
(
(EV ∗(E,A,B)+ imB)∩ (AW ∗

(E,A,B)+ imB)
)

Step 2b
= dim(EV ∗(E,A,B)+ imB)−dim(E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB)

Step 3a
= dim

((
E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB
)
⊕ imEP1

)
−dim(E(V ∗(E,A,B)∩W ∗

(E,A,B))+ imB)

= rkEP1 = rkP1 = n2,

where rkEP1 = rkP1 follows from the facts that kerR E ⊆W ∗
(E,A,B) and W ∗

(E,A,B)∩ imP1 = {0}.
Step 3c: We show that E22 is invertible.

Let x∈Rn2 be such that E22x= 0. Then it follows from (4) that EP1x=R2E12x and hence EP1x∈ imEP1∩ imR2 = {0}
by Step 3a. This implies x = 0 since rkEP1 = n2 by Step 3b.

Step 4: We show (iii).
Assume that there is λ ∈ C and x ∈ Cn3 such that (λE33−A33)x = 0. Then (4) implies that

(λE−A)Q1x = R2(λE13−A13)x+P2(λE23−A23)x.

Considering the real and imaginary part of the above equation and writing λ = µ + iν , x = x1 + ix2 for µ,ν ∈ R,
x1,x2 ∈ Rn we obtain, invoking that im[R2,P2] = EV ∗(E,A,B)+ imB,

(µE−A)Q1x1−νEQ1x2 ∈ EV ∗(E,A,B)+ imB ∧ (µE−A)Q1x2 +νEQ1x1 ∈ EV ∗(E,A,B)+ imB.

Hence there exist v1,v2 ∈ V ∗(E,A,B) and b1,b2 ∈ imB such that

(µE−A)Q1x1−νEQ1x2 = Ev1 +b1, (µE−A)Q1x2 +νEQ1x1 = Ev2 +b2. (5)

Then AQ1x1 = E(µQ1x1−νQ1x2− v1)−b1, AQ1x2 = E(µQ1x2 +νQ1x1− v2)−b2 and hence

Q1x1,Q1x2 ∈ A−1(imE + imB) = V 1
(E,A,B).

Again invoking (5) and noting that both µQ1x1− νQ1x2− v1 and µQ1x2 + νQ1x1− v2 are contained in V 1
(E,A,B) +

V ∗(E,A,B) = V 1
(E,A,B) we obtain

Q1x1,Q1x2 ∈ A−1(V 1
(E,A,B)+ imB) = V 2

(E,A,B).

Repeating this procedure yields Q1x1,Q1x2 ∈ V ∗(E,A,B) ∩ imQ1 = {0} and since Q1 has full column rank it follows
x1 = x2 = 0 and hence x = 0. Note that the resulting full column rank of A33 also implies that l3 ≥ n3. This finishes
the proof of the theorem.

Remark 3.2. (i) The full row rank of [E11,B1] in property (i) of the KCD (3) does not already follow from the
complete controllability of (E11,A11,B1). This is due to the fact, that any completely controllable DAE can
be augmented by zero rows (i.e., adding 0 = 0) without altering its solution behavior at all. However, in the
KCD these zero rows will occur as additional 1×0 blocks in (E33,A33,0). In fact, the KCD of

([
1
0

]
,
[

1
0

]
,
[

1
0

])
is obtained with the identity transformations S =

[
1 0
0 1

]
and T = 1, where l1× n1 = 1× 1, l2× n2 = 0× 0, and

l3×n3 = 1×0.

(ii) In contrast to the above, the addition of a row 0 = ũ for some new input ũ, without increasing the state space,
does not change the augmented Wong sequences of the overall system. Therefore, these additional rows oc-
cur in the block (E11,A11,B1) in the KCD and lead to the fact that possibly l1 > n1; for instance the system([

1
0

]
,
[

0
1

]
,
[

1 0
0 1

])
is already in KCD with only a (E11,A11,B1) block. However, it is always true that l1 ≤ n1+m.

(iii) While l2 = n2 = 0 just means that the corresponding blocks in the KCD (3) are not present, we have seen
above that n3 = 0 does not imply that the corresponding blocks are not present, they just have zero columns.
Analogously, l1 = 0 does also not imply that the corresponding blocks are not present, because there might still

6



be 0× 1 blocks present in the KCD (corresponding to free and hence completely controllable variables). For
example, the KCD of the DAE ([0], [0], [0]) consists of blocks of the sizes l1×n1 = 0×1, l2×n2 = 0×0 and
l3×n3 = 1×0; in particular, rk[E11,B1] = 0 = l1.

(iv) Furthermore, as we have seen in item (ii) above, also n1 = 0 does not imply that the corresponding block in the
KCD is not present, since e.g. the DAE

([
0
0

]
,
[

0
1

]
,
[

1
0

])
is already in KCD with blocks of sizes l1×n1 = 1×0,

l2×n2 = 0×0 and l3×n3 = 1×1; in particular, rk[E11,B1] = rkB1 = 1 = l1.

(v) From property (iii) of (3) it follows that R(E33,A33,0) = {0} and that
([

E11 E13
0 E33

]
,
[

A11 A13
0 A33

]
,
[B1

0

])
as well as

(E33,A33,0) are controllable in the behavioral sense. The remaining “uncontrollable” subsystem (E22,A22,0)
is described by an ODE since E22 is invertible. This is remarkable, since the pencil sE −A ∈ R[s]l×n is not
necessarily regular.

In the following we prove a uniqueness property of the KCD.

Theorem 3.3 (Uniqueness of KCD). Let (E,A,B) ∈ Σl×n
m and S1,S2 ∈GLl , T1,T2 ∈GLn be such that for i = 1,2

(E,A,B)
Si,Ti∼= (Ei,Ai,Bi) =

E11,i E12,i E13,i
0 E22,i E23,i
0 0 E33,i

 ,
A11,i A12,i A13,i

0 A22,i A23,i
0 0 A33,i

 ,
B1,i

0
0


with corresponding block sizes given by l1,i,n1,i, l2,i,n2,i, l3,i,n3,i and the corresponding blocks satisfy conditions (i)–
(iii) from Theorem 3.1.
Then l1,1 = l1,2, l2,1 = l2,2, l3,1 = l3,1,n1,1 = n1,2,n2,1 = n2,2,n3,1 = n3,2 and, moreover, for some S11 ∈ GLl1,1 ,S22 ∈
GLl2,1 ,S33 ∈GLl3,1 ,T11 ∈GLn1,1 ,T22 ∈GLn2,1 ,T33 ∈GLn3,1 and S12,S13,S23,T12,T13,T23 of appropriate sizes we have
that

S2S−1
1 =

S11 S12 S13
0 S22 S23
0 0 S33

 , T−1
1 T2 =

T11 T12 T13
0 T22 T23
0 0 T33

 .
In particular,

(E11,1,A11,1,B1,1)∼= (E11,2,A11,2,B1,2), (E22,1,A22,1,0)∼= (E22,2,A22,2,0), (E33,1,A33,1,0)∼= (E33,2,A33,2,0).

Proof. Without loss of generality we assume that S1 = Il and T1 = In.
Step 1: Invoking Remark 2.4 we have

Rn1,1 ×{0}= R(E1,A1,B1) = T2R(E2,A2,B2) = T2(Rn1,2 ×{0}),

and this implies n1,1 = n1,2 as well as

T2 =

T11 T12 T13
0 T22 T23
0 T32 T33

 for T11 ∈GLn1,1 ,T22 ∈ Rn2,1×n2,2 ,T33 ∈ Rn3,1×n3,2

and T12,T13,T23,T32 of appropriate size. Furthermore, we have

Rn1,1+n2,1 ×{0}= V ∗(E1,A1,B1)
= T2V

∗
(E2,A2,B2)

= T2(Rn1,2+n2,2 ×{0}),

which together with n1,1 = n1,2 gives that n2,1 = n2,2, n3,1 = n3,2 and

T32 = 0, T22 ∈GLn2,1 , T33 ∈GLn3,1 .
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Step 2: Partitioning

S2 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

 for S11 ∈ Rl1,2×l1,1 ,S22 ∈ Rl2,2×l2,1 ,S33 ∈ Rl3,2×l3,1 ,

and off-diagonal block matrices of appropriate size, we find that the equations S2E1T2 = E2 and S2B1 = B2 yield that[
S21
S31

]
[E11,1T11,B1] = 0,

and the full row rank of [E11,1,B1] then gives S21 = 0 and S31 = 0. Since S2 is invertible it follows that l1,1 ≤ l1,2.
Reversing the roles of (E1,A1,B1) and (E2,A2,B2) gives l1,1 ≥ l1,2, whence l1,1 = l1,2. We further have the equation

S32E22,1T22 = 0

which by invertibility of T22 and E22,1 gives that S32 = 0. This finally implies l2,1 = l2,2 = n2,1 = n2,2, l3,1 = l3,2,
S22 ∈GLl2,1 and S33 ∈GLl3,1 and finishes the proof.

4. KCD for the regular case

Regularity of the system (E,A,B) implies that equation (1) has a solution for any (sufficiently smooth) input u
and each such solution is uniquely determined by the initial value x(0). Therefore, regularity is often assumed for
the analysis and numerical simulation. Due to its importance, we like to highlight some features of the KCD for the
regular case. For the solution theory of DAEs, the original Wong sequences (with B = 0) play a fundamental role and
we also present the connection between the original Wong sequences and the KCD.

In the following we denote with V ∗(E,A) and W ∗
(E,A) the limits of the original Wong sequences given by

V 0
(E,A) := Rn, V i+1

(E,A) := A−1(EV i
(E,A)), i ∈ N,

W 0
(E,A) := {0}, W i+1

(E,A) := E−1(AW i
(E,A)), i ∈ N,

i.e., V ∗(E,A) = V ∗(E,A,0) and W ∗
(E,A) =W ∗

(E,A,0). The original Wong sequences can be used to obtain the quasi-Weierstrass
form (QWF) (or quasi-Kronecker form in the singular case [6, 7]).

Proposition 4.1 (Quasi-Weierstrass form, [16], [4]). The DAE (E,A,B) ∈ Σn×n
m is regular if, and only if,

(E,A,B)
S,T∼=
([

I 0
0 N

]
,

[
J 0
0 I

]
,

[
B1
B2

])
, (6)

where N ∈ Rn2×n2 , 0 ≤ n2 ≤ n is nilpotent and J ∈ Rn1×n1 ,B1 ∈ Rn1×m,B2 ∈ Rn2×m, n1 := n−n2. Furthermore, the
transformation matrices T = [T1,T2] ∈GLn and S ∈GLn achieve the QWF (6) if, and only if,

imT1 = V ∗(E,A), imT2 = W ∗
(E,A), S = [ET1,AT2]

−1.

By Proposition 4.1, the original Wong sequences yield a decoupling of the DAE into an ODE v̇(t) = Jv(t)+B1u(t)
and a so called pure DAE Nẇ(t) = w(t)+B2u(t), where the latter has the unique solution w = −∑

n2−1
i=0 Ni(B2u)(i);

note that by definition of B(E,A,B) we only have u ∈L 1
loc, but w ∈W 1

loc and (w,u) being a solution trajectory enforces
higher differentiability of the input components B2u, see [3, Sec. 2.4.2].

The Wong sequences are coordinate free in the sense that the specific choice of T1 and T2 is not relevant. Once the
QWF is obtained for a specific choice of the coordinate transformation T it is not difficult to obtain a KCD for each
block separately (see e.g. [9]):
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Proposition 4.2 (KCD based on QWF). Consider regular (E,A,B) ∈ Σn×n
m . Then

(E,A,B)∼=




I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

 ,


J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

 ,


B11
0

B21
0


 , (7)

where
([

I 0
0 N11

]
,

[
J11 0
0 I

]
,

[
B11
B21

])
is completely controllable and N11 and N22 are nilpotent.

Proof. Assume the DAE (E,A,B) is transformed in QWF (6) with block sizes n1× n1 and n2× n2 and T = [T1,T2],
S = [ET1,AT2]

−1. Then choose T11,T12,T21,T22 as follows

imT11 = im〈J,B1〉, im〈J,B1〉⊕ imT12 = Rn1 ,

imT21 = im〈N,B2〉, im〈N,B2〉⊕ imT22 = Rn2 ,

where 〈A,B〉= [B,AB,A2B, ... . . .AnB] for A ∈ Rn×n and B ∈ Rn×m. The transformation matrices

T = [T1,T2]

[
T11 T12 0 0
0 0 T21 T22

]
,S =

(
[ET1,AT2]

[
T11 T12 0 0
0 0 T21 T22

])−1

then yield the desired KCD, for details see [9].

Clearly, the KCD (7) obtained via the QWF matches the general KCD (3) after a simple rearrangement of the
corresponding blocks, in particular

(E11,A11,B1) =

([
I 0
0 N11

]
,

[
J11 0
0 I

]
,

[
B11
B21

])
, (E22,A22,0) = (I,J22,0), (E33,A33,0) = (N22, I,0).

However, the form (7) is not really satisfactory as its derivation needs two separate coordinate transformations: first,
one needs to transform the DAE (E,A,B) into QWF and then the ODE and pure DAE parts have to be transformed
again. In particular, the latter transformation depends on the chosen coordinate transformation for the QWF (because
J and N depend on T ) and is therefore not coordinate free. Furthermore, there is no geometric insight because the
connection to the augmented Wong sequences is not clear.

Now we present a more geometric approach. To this end, we need to introduce certain projectors, defined in terms
of the Wong sequences, cf. [14].

Definition 4.3 (Consistency, differential and impulse projector). With the notation of Proposition 4.1 define the con-
sistency projector

Π(E,A) := T
[

I 0
0 0

]
T−1,

the differential projector

Π
diff
(E,A) := T

[
I 0
0 0

]
S,

and the impulse projector

Π
imp
(E,A) := T

[
0 0
0 I

]
S,

where the block matrix sizes correspond to the block sizes in the QWF. Furthermore, let

Adiff := Π
diffA, Bdiff := Π

diffB, E imp := Π
impE, Bimp := Π

impB.

Note that the consistency projector is a projection onto V ∗(E,A) along W ∗
(E,A), but the differential and impulse projec-

tors are not idempotent and hence are not projectors in the usual sense. Furthermore, it is easy to see that all projectors
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(and consequently Adiff, Bdiff, E imp, Bimp) do not depend on the specific choice of the transformation matrices T and S
(and only on the spaces V ∗(E,A), W ∗

(E,A)). Finally, observe that

imAdiff ⊆ V ∗(E,A), imBdiff ⊆ V ∗(E,A), imE imp ⊆W ∗
(E,A), Bimp ⊆W ∗

(E,A).

With the help of these matrices the connection between the original and augmented Wong sequences can be established
as follows.

Theorem 4.4 (Connection between Wong sequences). Let (E,A,B) ∈ Σn×n
m be regular. Denote with V ∗(E,A), W ∗

(E,A),
V ∗(E,A,B), W ∗

(E,A,B) the limits of the original and augmented Wong sequences, respectively. Using the notation from
Definition 4.3, we have

V ∗(E,A,B) = V ∗(E,A)⊕ im〈E imp,Bimp〉 and W ∗
(E,A,B) = W ∗

(E,A)⊕ im〈Adiff,Bdiff〉.

Proof. Step 1: We show V ∗(E,A,B) = V ∗(E,A)⊕ im〈E imp,Bimp〉.
From Remark 2.4 we know that V ∗(E,A,B) equals the space of consistent initial values. On the other hand, from the
solution formula in [15, Thm. 6.4.4] it follows that all (x,u) ∈B(E,A,B) satisfy

x(0) = Π(E,A)c−
ν−1

∑
i=0

(E imp)i(Bimpu)(i)(0),

for some c∈Rn and ν ∈N such that (E imp)ν = 0 and (E imp)ν−1 6= 0, where it follows from x∈W 1
loc and [3, Sec. 2.4.2]

that Bimpu ∈W ν−1
loc . Since the derivatives of Bimpu at t = 0 can be chosen independently of each other it follows that

x0 is consistent ⇔ x0 ∈ imΠ(E,A)+ im〈E imp,Bimp〉.

By construction imΠ(E,A) = V ∗(E,A), im〈E imp,Bimp〉 ⊆ imΠ
imp
(E,A) ⊆W ∗

(E,A) and V ∗(E,A)∩W ∗
(E,A) = {0}, hence the claim

is shown.
Step 2: We show W ∗

(E,A,B) = W ∗
(E,A)⊕ im〈Adiff,Bdiff〉.

First observe that W ∗
(SET,SAT,SB) = T−1W ∗

(E,A,B), W ∗
(SET,SAT ) = T−1W ∗

(E,A), (SAT )diff = T−1AdiffT and (SB)diff =

Πdiff
(SET,SAT )SB = T−1Bdiff for any invertible S and T ; in particular, we have the following equivalences:

W ∗
(E,A,B) = W ∗

(E,A)⊕ im〈Adiff,Bdiff〉 ⇔ T−1W ∗
(E,A,B) = T−1W ∗

(E,A)⊕T−1 im〈Adiff,Bdiff〉

⇔ W ∗
(SET,SAT,SB) = W ∗

(SET,SAT )⊕ im〈(SAT )diff,(SB)diff〉.

Hence we can assume in the following that (E,A,B) is in QWF (6). It is then easy to see that

W ∗
(E,A) = {0}×Rn2 and im〈Adiff,Bdiff〉= im〈J,B1〉×{0}

and it remains to be shown that
W ∗

(E,A,B) = im〈J,B1〉×Rn2 .

With an inductive argument it is easy to see that

W i
(E,A,B) =

{ (
v
w

) ∣∣∣∣∣ ∃b1,b2, . . . ,bi ∈ Rm :
v = Ji−1B1b1 + Ji−2B1b2 + . . .+B1bi,

Niw = B2b1 +NB2b2 + . . .+Ni−1B2bi

}

in particular,

W ∗
(E,A,B) = W n

(E,A,B) =

{ (
v
w

) ∣∣∣∣∣ ∃b1,b2, . . . ,bn ∈ Rm :
v = Jn−1B1b1 + Jn−2B1b2 + . . .+B1bn

Nnw = B2b1 +NB2b2 + . . .+Nn−1B2bn,

}
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V ∗(E,A) W ∗
(E,A)

Rn

im〈Adiff,Bdiff〉 im〈E imp,Bimp〉

R(E,A,B) V ∗(E,A,B)

Figure 1: The relationship between the spaces V ∗(E,A), W ∗
(E,A), im〈Adiff,Bdiff〉, im〈E imp,Bimp〉.

=

 v

∣∣∣∣∣∣∣ v = Jn−1B1b1 + Jn−2B1b2 + . . .+B1bn,

b1
...

bn

 ∈ ker[B2,NB2, . . . ,NnB2]

×Rn2 ,

because Nn = 0. In fact, it holds that 0 = Nn2 = Nn2+1 = . . . = Nn, which implies that bn−n1+1,bn−n1+2, . . . ,bn are
free and hence, invoking Cayley-Hamilton, we arrive at

W ∗
(E,A,B) = im〈J,B2〉×Rn2 .

Recalling the observations in Remark 2.4 and the findings in Theorem 4.4, we obtain the following.

Corollary 4.5. With the notation of Theorem 4.4 the following holds:

(i) The consistency space of (E,A,B) is given by V ∗(E,A,B) = V ∗(E,A)⊕ im〈E imp,Bimp〉.

(ii) The reachable space of (E,A,B) is given by R(E,A,B) = im〈Adiff,Bdiff〉⊕ im〈E imp,Bimp〉, in particular, (E,A,B)
is completely controllable if, and only if,

im〈Adiff,Bdiff〉⊕ im〈E imp,Bimp〉= Rn.

(iii) (E,A,B) is controllable in the behavioral sense if, and only if,

im〈Adiff,Bdiff〉= V ∗(E,A) or, equivalently, im〈Adiff,Bdiff〉⊕W ∗
(E,A) = Rn.

Proof. Property (i) was already established in the proof of Theorem 4.4. Properties (ii) and (iii) follow directly from
Lemma 2.2 and Theorem 4.4 taking into account the following subspace relationships (see also Figure 1):

im〈Adiff,Bdiff〉 ⊆ V ∗(E,A) ⊆ V ∗(E,A,B), im〈E imp,Bimp〉 ⊆W ∗
(E,A) ⊆W ∗

(E,A,B), V ∗(E,A)⊕W ∗
(E,A) = Rn.

Finally, we may obtain the KCD directly in terms of the original system’s matrices (and in the original coordinate
system) as follows.

Corollary 4.6 (Regular KCD). Use the notation from Definition 4.3 and Theorem 4.4. Choose full column rank
matrices P1,P2, R, Q as follows:

imP1 = im〈Adiff,Bdiff〉, im〈Adiff,Bdiff〉⊕ imR = V ∗(E,A),

imP2 = im〈E imp,Bimp〉, im〈E imp,Bimp〉⊕ imQ = W ∗
(E,A).
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Then T = [[P1,P2],R,Q]∈GLn and S = [[EP1,AP2],ER,AQ]−1 ∈GLn transform the DAE (E,A,B) into KCD (3) with
some additional zero blocks:

(E,A,B)
S,T∼=



[

I 0
0 N11

] [
0
0

] [
0

N12

]
0 I 0
0 0 N22

 ,


[

J11 0
0 I

] [
J12
0

] [
0
0

]
0 J22 0
0 0 I


 ,

[

B1
B2

]
0
0


 ,

where
([

I 0
0 N11

]
,

[
J11 0
0 I

]
,

[
B11
B21

])
is completely controllable and N11 and N22 are nilpotent.

Proof. Let T̃ = [P1,R,P2,Q] and S̃ = [EP1,ER,AP2,Q] be rearranged basis matrices. Then (using the notation from
Proposition 4.2)

T̃−1〈Adiff,Bdiff〉= im〈J,B1〉×{0}= im〈J11,B11〉×{0} ⊆ Rn1 ×{0},
T̃−1〈E imp,Bimp〉= {0}× im〈N,B2〉= {0}× im〈N11,B21〉 ⊆ {0}×Rn2 ,

and the claim follows from Proposition 4.2 with transformation matrices T̃ and S̃.

5. Conclusion

We have presented a new Kalman controllability decomposition for general differential-algebraic systems. This
decomposition decouples the original DAE into an completely controllable part, a classical uncontrollable part (given
by an ODE) and an inconsistent part which is controllable in the behavioral sense but contains no completely control-
lable part. The corresponding coordinate transformations can easily be obtained via the augmented Wong sequences.
For the regular case the construction further simplifies and nice subspace relations become apparent. In particular, a
connection between the augmented and the original Wong sequences is established.
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