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Abstract— We propose the notion of nondecreasing Lyapunov
functions which can be used to prove stability or other prop-
erties of the system in question. This notion is in particular
useful in studying switched or hybrid systems. We illustrate
the concept by a general construction of such a nondecreasing
Lyapunov function for a class of planar hybrid systems. It is
noted that this class encompasses switched systems for which
no piecewise-quadratic (classical) Lyapunov function exists.

I. INTRODUCTION

Switched Systems are systems involving both continuous
and discrete dynamics. They consist of a finite number
of subsystems and a discrete rule that dictates switching
between these subsystems [10]. They have been widely
studied during the last two decades (see for instance [4], [9],
[12]) because they can describe a wide range of physical and
engineering systems.

The design of Lyapunov functions is of high interest
in systems theory. Indeed, it finds direct applications in
stability analysis of nonlinear systems. This is achieved
by looking at the sign of time derivative of the Lyapunov
function along the solutions of the system. Furthermore,
other challenges are implicitly linked such as performance
analysis and controller design for instance. Hence, methods
to design Lyapunov functions for general nonlinear systems
are of great theoretical and practical interest.

The simple test of looking at the time derivative of the
Lyapunov function is not available anymore for switched
or hybrid systems as differentiability (or even continuity)
of the Lyapunov functions along solutions does not hold in
general. A general approach to the above problem is based
on the construction of a common Lyapunov function for
the family of subsystems corresponding to the considered
switched system [11], [13]. However, even for the case of
general linear switched systems, there is no constructive
procedure to show the existence of a common Lyapunov
function. Some of the available methods are rather involved
due to the fact, that one still aims to construct a decreasing
Lyapunov function. Additional assumptions on the switching
law (dwell time for instance) have been added to analyze
the stability using multiple Lyapunov functions [3], [14].
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However, in this case, the subsystems are required to be
asymptotically stable.

In [2], it is shown that stabilizability of switched linear
systems does not imply the existence of a convex Lya-
punov function (including norms and quadratic functions).
The search for a piecewise quadratic Lyapunov function is
formulated as a convex optimization problem in terms of
linear matrix inequalities [7]. This approach enables to derive
a Lyapunov function for a class of switched linear systems
where the subsystems are not required to be asymptotically
stable. However, the search of a decreasing function needs
hard restrictions on the switching signals. In [3], it is shown
that this is not a mandatory condition for the design of
Lyapunov function candidates. For conewise linear systems
a construction for piecewise-quadratic Lyapunov functions
is presented in [6], [5]; we will compare this approach with
ours in Section IV.

In this paper, the notion of nondecreasing1 Lyapunov func-
tions is introduced for a general class of nonlinear switched
systems. Using this notion, it will be easier in general to
study stability, analyze performance and design controllers.
Furthermore, for a rather general class of switched linear sys-
tems a constructive procedures for deriving a nondecreasing
Lyapunov function is given.

Similar ideas were proposed for the discrete time case in
[1], [8] but due the discrete nature of time the methods are
quite different to the ones used for the continuous time case.

The outline of this paper is as follows. Section II derives
the framework of nondecreasing Lyapunov functions for
switched or hybrid nonlinear systems. Then in Section III,
a class of piecewise linear systems is studied and a general
construction for a nondecreasing Lyapunov function is given.
It should be highlighted that the proposed scheme is a
powerful tool since it provides a solution even if there does
not exist a piecewise-quadratic Lyapunov function in the
sense of [7]; this is illustrated with a specific example in
Section IV.

We conclude this introduction with some remarks on
notation. For a piecewise continuous function f : R → Rn
we denote the limit of f(s) as s ∈ R approaches t ∈ R
from the left by f(t−) and from the right by f(t+). For
simplicity we will assume that f(t) = f(t+) for all t ∈ R,
i.e. any piecewise continuous function is assumed to be right
continuous. A continuous function α : R≥0 → R≥0 is
called a K-function, if α(0) = 0 and α is strictly increasing.

1Here “nondecreasing” is not used in the usual sense, because we do not
assume that the function is nowhere decreasing; it would be more precise to
use “not necessarily decreasing” or “non-monotonically decreasing” which
are, however, a bit clumsy.



With K∞-functions we denote all K-functions which grow
unboundedly. A continuous function γ : R≥0 → R≥0 is
called an L-function if it is strictly decreasing with γ(t)→ 0
as t → ∞. A continuous function β : R≥0 × R≥0 is called
a KL-function if β(·, t) is a K-function for each fixed t ≥ 0
and β(r, ·) is an L-function for each fixed r > 0.

II. NONDECREASING LYAPUNOV FUNCTIONS

We consider hybrid systems of the following form

ẋ(t) = fq(t)(x(t)), ∀t ≥ 0 with q(t) = q(t−),

x(t) = gq(t−),q(t)(x(t−)), q(t) 6= q(t−),

x(0−) = x0 ∈ Rn

q(t) = h(q(t−), x(t−), σ(t)) ∀t ≥ 0,

q(0−) = q0 ∈ Q.

(1)

Here Q is the set of discrete states, fq : Rn → Rn is the
vector field of mode q ∈ Q, gq−,q : Rn → Rn is the jump
map whenever the discrete state changes from q− ∈ Q to
q ∈ Q, σ ∈ Σ ⊆ P [0,∞) is an external right continuous
switching signal (i.e. state independent) with values in the set
P and where Σ denotes the allowed class of these switching
signals (e.g. no accumulation of switching times, some dwell
time condition or some condition on the mode sequences),
and h : Q × Rn × P → Q is the discrete state map. This
system class is quite general and encompasses purely time-
dependent switched systems (i.e. h(q, x, σ) = σ) as well
as pure state-dependent switched systems (where h(q, x, σ)
only depends on x); in the latter case we will (with some
abuse of notation) write σ(x) to denote the state-dependent
switching signal. We make the following assumption on the
solvability of (1)

Assumption 1: For any switching signal σ ∈ Σ and any
initial values x0 ∈ Rn, q0 ∈ Q there exists a solution (x, q) :
R→ Rn ×Q of (1), in particular,

(i) q is piecewise constant, right-continuous and q(t−)
exists for all t ≥ 0, i.e. the set of discontinuities of
q on [0,∞) has no accumulation points,

(ii) x is continuously differentiable on each interval
[t1, t2) ⊆ R≥0 on which q is constant.

We recall the definition of a classical Lyapunov function
(in the framework of KL-functions).

Definition 2.1 (c.f. [2]): Consider a dynamical system (1)
satisfying Assumption 1 which produces trajectories x(·) :
R→ Rn. We call V : Rn → R a Lyapunov function for (1)
if, and only if,

(i) There exist K∞-functions α1 and α2 such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Rn.

(ii) There exists a KL-function β such that for all trajec-
tories x(·) of (1)

V
(
x(t)

)
≤ β

(
V
(
x(t0)

)
, t− t0

)
∀t ≥ t0. (2)

(iii) The KL-function β from above additionally fulfills

β(v, 0) = v.

It is straightforward to see (even for the general system
class given by (1)) that a Lyapunov function in the above
sense ensures asymptotic stability uniformly in the initial
values (x0, q0) as well as in the external switching signal
σ. A key feature which can also be explored to verify the
existence of a Lyapunov function (see discussion below) is
the fact that the above conditions ensures that V decreases
along solutions:

V (x(t2))≤β(V (x(t1), t2 − t1)<β(V (x(t1), 0)=V (x(t1))

for any t2 > t1.
However, in order to prove convergence of the trajectories

to zero it is in fact not necessary to assume that V decreases
along solution as long as (2) holds. It is therefore a natural
generalization to consider Lyapunov functions which are not
necessarily decreasing along solutions:

Definition 2.2: We call V : Rn → R a nondecreasing
Lyapunov function for the dynamical system (1) if, and only
if,

(i) There exist K∞-functions α1 and α2 such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Rn. (3)

(ii) There exists a KL-function β such that for all trajec-
tories x(·) of (1)

V
(
x(t)

)
≤ β

(
V
(
x(t0)

)
, t− t0

)
∀t ≥ t0. (4)

From (4) together with (3) it immediately follows that each
trajectory of (1) converges to zero. Furthermore, (4) ensures
that each trajectory remains within the compact sublevel set
of V with the level β(V (x(t0)), 0). The latter can be made
arbitrarily small for sufficiently small x(t0), hence we have
also shown stability. Altogether, we have asymptotic stabil-
ity for (1) satisfying Assumption 1 when a nondecreasing
Lyapunov function in the sense of Definition 2.2 exists.

Remark 2.3: If V is some norm on Rn then the definition
of a nondecreasing Lyapunov function is actually identical
to the usual asymptotic stability definition (in the framework
of KL-functions). However, V is not necessarily a norm and
even if it is a norm there is more flexibility as one is not
restricted to a given norm (e.g. the Euclidian norm usually
used in the stability definition).

The popularity for the usage of Lyapunov functions to
show stability of nonlinear systems is the possibility to
show existence of a Lyapunov function without knowing the
solutions. This is achieved by looking at the derivative of
V along solutions which can be expressed by ∇V (x)f(x)
when the nonlinear system is given by ẋ = f(x). This
simple test is, however, not available anymore for switched
or hybrid systems as differentiability (or even continuity)
of the Lyapunov functions along solutions does not hold in
general. There are numerous ways to deal with this problem.
Some of these methods are rather involved due to the fact,
that one still aims to construct a decreasing (common)
Lyapunov function. As we have pointed out above this is
an unnecessary restriction of Lyapunov function candidates.
We therefore conjecture that it is in general much easier to
find a nondecreasing Lyapunov function than it is to find a



usual Lyapunov function. One way towards this construction
could be the following result:

Lemma 2.4: Consider the switched system (1) satisfying
Assumption 1. Assume there is a function V̂ satisfying the
following:

(i) There exist K∞-functions α̂1 and α̂2 such that

α̂1(‖x‖) ≤ V̂ (x) ≤ α̂2(‖x‖) ∀x ∈ Rn.

(ii) For every trajectory x(·) : R → Rn there exist a
function x̂(·) : R → Rn and a K-function α̂3 such
that:

‖x(t)‖ ≤ α̂3(‖x̂(t)‖) ∀t ≥ 0.

(iii) Furthermore, there exists a KL-function β̂ such that
for x̂ as above

V̂
(
x̂(t)

)
≤ β̂

(
V̂ (x̂(t0)), t− t0

)
∀t ≥ t0.

Then V̂ is a nondecreasing Lyapunov function for (1). In
particular, finding a function V̂ and x̂ with the above prop-
erties ensures that the switched system (1) is asymptotically
stable.

Proof: It suffices to construct β such that (2) holds.

V̂
(
x(t)

)
≤ α̂2

(
‖x(t)‖) ≤ α̂2

(
α̂3(‖x̂(t)‖)

)
≤ α̂2

(
α̂3(α̂−11 (V̂ (x̂(t))))

)
≤ α̂2

(
α̂3(α̂−11 (β̂(V̂ (x̂(t0), t− t0))))

)
=: β(V̂ (x(t0)), t− t0)

This shows that V̂ in addition to (3) also satisfies (4), i.e.
V̂ is a nondecreasing Lyapunov function; in particular, (1)
is asymptotically stable.

III. CONSTRUCTION OF A NONDECREASING LYAPUNOV
FUNCTION FOR A GENERIC EXAMPLE CLASS

We consider the switched system

ẋ = Aσ(x)x (5)

satisfying the following assumptions:
(i) The state space is two dimensional, i.e. x(t) ∈ R2.

(ii) The switching signal σ : R2 \ {0} → {1, 2, . . . , N}
is such that Ci := σ−1(i), i = 1, 2, . . . , N , are
(disjoint) cones and R2 \ {0} =

⋃
i Ci. With only a

slight restriction of generality, we can assume that there
are pairwise distinct vectors c1, c2, . . . , cN−1, cN ∈
Rn\{0} and cN+1 := c1 arranged anti-clockwise such
that

Ci = { λci + µci+1 | λ > 0, µ ≥ 0 } ,

i.e. the cone Ci is bounded by the lines spanned by
ci ∈ Ci and ci+1 /∈ Ci. In the following we will call
ci the right and ci+1 the left border of the cone Ci.
Furthermore we can assume that 〈ci, ci+1〉 ≥ 0 (i.e. the
angle between ci+1 and ci is less or equal than 90◦),
because if this is not the case for some i one could split
the cone Ci in the middle to reduce the angle between

the right and left border. This will introduce one new
mode (but with the same dynamics as the mode i).

(iii) In each mode the dynamics flow from the right border
of Ci to the left border, i.e. for all i = 1, 2, . . . , N there
exists ε > 0 such that

ci + εAici ∈ Ci \ {ci} ∧ ci+1 − εAici+1 ∈ Ci,

and let ∆i > 0 denote the time a trajectory of mode
i needs to reach the left border from the right border,
i.e.

xi(∆i) = γici+1 for some γi > 0, (6)

where xi is the solution of ẋi = Aixi, xi(0) = ci.
Due to linearity, for any η > 0 it holds that xi(∆i) =
ηγci+1 if xi(0) = ηci, i.e. ∆i and γi do not depend
on where the trajectory starts on the left border.

(iv) There exists a norm ‖ · ‖ on R2 such that ‖xi(∆i)‖ <
‖ci‖ where xi is a solution of ẋi = Aixi, xi(0) = ci.
Without restriction of generality (just scale ci accord-
ingly) we assume ‖ci‖ = 1. Under this rescaling we
have γi < 1 in (6).

(v) For each sector Ci the two “flow arrows” starting at ci
and ending at ci+1 intersect within Ci, i.e. there exist
νi, κi > 0 such that

ci + νiAici = ci+1 − κiAici+1.

In summary we consider (state-dependent) switched linear
systems whose trajectory move anti-clockwise. The strongest
and maybe most difficult to verify condition is assumption
(iv). However, the desired inequality only has to hold for N
pairs of points and might be easy to check in many practical
examples. In particular, it is not assumed that t 7→ ‖xi(t)‖ is
decreasing on the whole of the interval [0,∆i], i.e. ‖·‖ is not
a Lyapunov function in general. Nevertheless it is not difficult
to show that under these assumptions the switched system
is asymptotically stable by looking at the discretized system
zi+1 = xi(∆i) where xi solves ẋi = Aixi, xi(0) = zi which
is contracting in the norm ‖ · ‖. However, it is not easy to
come up with a Lyapunov function for this switched system;
in some cases, however, the approach in [7] might give a
solution. One specific example, which cannot be handled by
the approach in [7] is discussed in the next section.

A construction of a nondecreasing Lyapunov function
under the above assumptions is however quite simple (for
an illustration see Figure 1):

Step 1. For each cone Ci consider the straight lines Li
and Ri given by

Ri := { ci + νAici | ν > 0 }
Li := { ci+1 − κAici+1 | κ > 0 }

Step 2. If the intersections of the lines Li and Ri is outside
the triangle given by 0, ci, ci+1 (Case A) then let νi > 0 and
κi > 0 be the corresponding parameters of the intersection
and let

Ri := { ci + νAici | ν ∈ [0, νi) }
Li := { ci+1 − κAici+1 | κ ∈ (0, κi] } .
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Fig. 1: Illustration of construction of V̂ , Case A left and Case B right.

Otherwise (Case B) let Li be the line between ci and ci+1,
i.e.

Li := { κci + (1− κ)ci+1 | κ ∈ [0, 1) }

and set Ri := ∅. Denote with Si the right-most point of Li,
i.e. in the first case Si is the intersection of Ri and Li and
in the second case Si is just ci.

Step 3. Consider the closed (piecewise-linear) curve C :=
R1 ∪L1 ∪R2 ∪L2 ∪ . . .∪RN ∪LN in R2. It is easily seen
that there exists a homogenous, piecewise-linear function V̂
such that V̂ −1({1}) = C.

Step 4. Construct x̂ as follows (see also Figure 2): Let
t0 = 0 and ti = ti−1 + ∆i, for i ∈ N, where for i > N
we set ∆i := ∆(i mod N)+1 and similar for γi and ci
in the following. Furthermore let x̂i be defined inductively
as follows: x̂0 = x(0) and x̂i+1 := γi‖x̂i‖ci+1. Now x̂
is defined on each interval [ti, ti+1) such that its graph
coincides with the line through Ŝi := ‖x̂i‖Si and x̂i+1. The
specific time parametrization is irrelevant as long as x̂(t)
moves monotonically from Ŝi to x̂i+1 as t increases from ti
to t−i+1. Note that, for regions Ci where Case A from Step 2
holds x̂ has jumps at the switching time ti.

Theorem 3.1: Consider the switched system (5) satisfying
the assumptions (i)-(v). Then the above constructed function
V̂ is a nondecreasing Lyapunov function for the switched
system (5).

Proof: We are utilizing Lemma 2.4 to show that V̂ is
a nondecreasing Lyapunov function. By construction, V̂ is
a homogenous function with compact level sets containing
the origin in its interior, hence V̂ is positive definite in the
sense of (i) in Lemma 2.4. To show (ii) of Lemma 2.4 we
first study the qualitative behavior of x(t) for t ∈ [ti, ti+1).
For simplicity we assume that x(ti) = ci. By linearity the
curvature of x(t) has constant sign, hence the curve x(t)
remains within the region enclosed by the origin, ci, Si and
ci+1, see Figure 2.

In fact, the curve even remains within the smaller region
enclosed by the origin, ci, Si and x(t−i+1) = γici+1. Hence
it is possible to construct x̂(t) as in Step 4 above and to
choose a K-function α̂3 such that property (ii) of Lemma 2.4
holds. Furthermore, by construction of V̂ and x̂ it follows
that V̂ (x̂(t)) is strictly decreasing on (ti, ti+1) (just observe
how x̂ intersects with the level curves of V̂ ). For Case A
we further observe that the jump at the beginning is along
the level curve of V̂ , hence V̂ (x̂(t−i )) = V̂ (x̂(t+i )). Since
we only have finitely many regions and homogenous V̂ and
x̂ is is possible to find a KL-function β̂ such that property
(iii) of Lemma 2.4 holds. Therefore we have shown that the
assumptions of Lemma 2.4 hold and V̂ is a nondecreasing
Lyapunov function for (5).

Ci

Ri

Aici

x(ti) = ci

Li
−Aici+1ci+1

Si

x(t)

x̂(t)γici+1

Ci
Aici

−Aici+1

Li

ci = Si

ci+1

x(t)

x̂(t)

γici+1

Fig. 2: Illustration of construction of x̂ and the proof idea of Theorem 3.1, Case A left and Case B right.



IV. A SPECIFIC EXAMPLE

We will illustrate the construction of a nondecreasing Lya-
punov function from the previous section by the following
specific example:

A1 = A3 =

[
1 −5

0.2 1

]
, A2 = A4 =

[
1 −0.2
5 1

]
(7a)

and

C1 = −C3 =
{
x ∈ R2

∣∣ x1 > 0, x2 ≥ 0
}
,

C2 = −C4 =
{
x ∈ R2

∣∣ x1 ≤ 0, x2 > 0
}
.

(7b)

We will show that this example satisfies the assumptions of
(5) (with any standard p-norm) and the trajectories converge
to zero as is shown in Figure 3.

x1

x2

Fig. 3: Converging trajectory (green) of the switched system (5)
given by (7) together with a level curve (red) of a nondecreasing
Lyapunov function V̂ .

But first we would like to highlight that for this example
it is impossible to construct a piecewise-quadratic Lyapunov
function:

Lemma 4.1: Consider the switched system (5) given by
(7). Then there does not exists a piecewise-quadratic Lya-
punov function in the sense of [7].

Proof: We consider the Lyapunov function candidate
given by

V (x) = Vi(x) for x ∈ Ci

where Vi(x) = x>Pix for some symmetric Pi =

[
ai bi
bi ci

]
∈

R2×2 satisfying

x>Pix > 0 and x>(A>i Pi + PiAi)x < 0 ∀x ∈ Ci.

First note that the unit vectors e1, e2 or its negations are
elements of the closure of Ci for each i ∈ {1, 2, 3, 4}. Hence
x>Pix > 0 for all x ∈ Ci implies e>1 Pe1 = ai ≥ 0 and

e>2 Pe2 = ci ≥ 0. In the following it suffices to consider
i ∈ {1, 2} because of symmetry. From

A>1 P1+P1A1 =
[

2a1+
2b1
5 2b1−5a1+ c1

5

2b1−5a1+ c1
5 2c1−10b1

]
A>2 P2+P2A2 =

[
2a2+10b2 2b2− a2

5 +5c2

2b2− a2
5 +5c2 2c2− 2b2

5

]
and the same argument as above it follows that x>(A>i Pi +
PiAi)x < 0 for x ∈ Ci implies

2a1 +
2b1
5

< 0, 2c1 − 10b1 ≤ 0,

2a2 + 10b2 ≤ 0, 2c2 −
2b2
5

< 0.

Simple rearrangements yield the following contradictions:

0 ≤ c1
5
≤ b1 < −5a1 ≤ 0,

0 ≤ 5c2 < b2 ≤ −
a2
5
≤ 0.

Hence a piecewise-quadratic Lyapunov function does not
exist for this example (note that we did not even assume
continuity of V to show the contradiction).

Remark 4.2: Note that we showed that the switched sys-
tem (5) given by (7) does not have a piecewise-quadratic
Lyapunoc function whose pieces are given by the four cones
C1,. . . ,C4. In fact, it is possible to construct a piecewise-
quadratic Lyapunov function if we allow more cones and use
the procedure described in [6], [5], whose authors reported
to us that their construction uses 108 cones for our specific
example.

We now derive explicitly V̂ for the switched linear system
(5) given by (7). In accordance with property (ii) of (5)
we choose c1 = −c3 = ( 1

0 ) and c2 = −c4 = ( 0
1 ). Then

assumption (iii) is satisfied for ∆i = π/2 and γ := γi =
eπ/2/5 ≈ 0.962 for all i ∈ {1, 2, 3, 4}. In particular, any
p-norm will satisfy (iv). Finally, assumption (v) holds for
νi = 2 and κi = 3/5 for all i ∈ {1, 2, 3, 4}. We can now
construct V̂ and x̂ according to Steps 1-4 above. Because of
symmetry it suffices to consider the first cone C1 only. The
lines R1 and L1 are given by

R1 =

{ (
ν + 1
ν/5

) ∣∣∣∣ ν ≥ 0

}
, L1 =

{ (
5κ

1− κ

) ∣∣∣∣ κ ≥ 0

}
.

The intersection of R1 and L1 is the point
(

3
2/5

)
which

lays outside the triangle whose corners are c1, c2 and the
origin; hence we are in Case A of the construction of V̂ ,
c.f. Figure 2. The nondecreasing Lyapunov function on C1
is now defined to be constant on the lines between c1 and
S1 :=

(
3

2/5

)
as well as between S1 and c2, c.f. Figure 3, i.e.

for x = ( x1
x2

) ∈ C1

V̂ (x) =

{
x1 − 5x2, if x2 < 2

15x1,

x1/5 + x2, if x2 ≥ 2
15x1

and analogously for x ∈ C2 ∪C3 ∪C4. Finally, for x(0) = c1
the auxiliary trajectory x̂(·) on the time interval [0, π/2) is
given by

x̂(t) =

{
c1 = ( 1

0 ) , if t = 0,(
3

2/15

)
− t

π/2

(
3

γ−2/15
)
, if t ∈ (0, π/2)



and analogously for t > π/2.
With this choice, the following comparison functions α̂1

and α̂2 satisfy assumption (i) from Lemma 2.4 (where we
take ‖ · ‖ = ‖ · ‖∞ to be the infinity norm):

α̂1 ≡ 1
3 , α̂2 ≡ 6

5

Considering the trajectory x(·) with initial value x(0) = c1
we can conclude the following inequalities (c.f. Figure 3):

∀t ∈ [0, π/2) : ‖x(t)‖ ≤ 2 and ‖x̂(t)‖ ≥ 2
5 .

From these it follows in general that α̂3 ≡ 5 satisfies
assumption (ii) of Lemma 2.4. Note that with an adequate
time parametrization for x̂ and a more precise analysis one
could actually choose α̂3 ≡ 1. Finally, we define

β̂0(η, s) := ηγk
(

1− 1− γ
π/2

)
(s− kπ/2)

where k ∈ N is such that s ∈ [kπ/2, (k + 1)π/2). Then β̂0
satisfies assumption (iii) of Lemma 2.4 under the assumption
that x(t0) = ηc1 for some η > 0. For arbitrary initial values
it suffices to scale β̂0 accordingly, i.e.

β̂(η, s) := β̂0(η, s)/γ

is one possible comparison function which makes assumption
(iii) of Lemma 2.4 valid.

V. CONCLUSION

We have presented the concept of a nondecreasing Lya-
punov function which is suitable to investigate asymptotic
stability of switched and hybrid systems. We proposed a
construction of a piecewise-linear nondecreasing Lyapunov
function for a class of switched systems and illustrated the
usefulness with a specific example for which no piecewise-
quadratic Lyapunov function exists. The aforementioned
construction is rather simple and we claim that for a wide

variety of hybrid systems it is much simpler to construct
a nondecreasing Lyapunov function than finding a usual
(common) Lyapunov function.

REFERENCES

[1] Amir Ali Ahmadi and Pablo A. Parrilo. Non-monotonic Lyapunov
functions for stability of discrete time nonlinear and switched systems.
In Proc. 47th IEEE Conf. Decis. Control, Cancun, Mexico, pages 614–
621. IEEE, 2008.

[2] Franco Blanchini and Carlo Savorgnan. Stabilizability of switched
linear systems does not imply the existence of convex Lyapunov
functions. Automatica, 44(4):1166 – 1170, 2008.

[3] Michael S. Branicky. Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems. IEEE Trans. Autom. Control,
43(4):475–482, 1998.

[4] Raymond A. DeCarlo, Michael S. Branicky, Stefan Pettersson, and
Bengt Lennartson. Perspectives and results on the stability and
stabilizability of hybrid systems. Proc. of the IEEE, 88(7):1069–1082,
2000.

[5] Raffaele Iervolino, Francesco Vasca, and Luigi Iannelli. Piecewise
quadratic stability of uncertain conewise linear systems through cone-
copositive programming. submitted for publication.

[6] Raffaele Iervolino, Francesco Vasca, and Luigi Iannelli. A cone-
copositive approach for the stability of piecewise linear differential
inclusions. Proc. 50th IEEE Conf. Decis. Control and European
Control Conference ECC 2011, Orlando, USA, 2011.

[7] Mikael Johansson and Anders Rantzer. Computation of piecewise
quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom.
Control, 43(4):555–559, 1998.

[8] Mircea Lazar. Flexible control Lyapunov functions. In Proc. American
Control Conf. 2009, pages 102–107. IEEE, 2009.

[9] Daniel Liberzon. Switching in Systems and Control. Systems and
Control: Foundations and Applications. Birkhäuser, Boston, 2003.
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