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Abstract— For the widely-used power system model consist-
ing of the generator swing equations and the power flow equa-
tions resulting in a system of differential algebraic equations
(DAEs), we introduce a sufficient and necessary solvability
condition for the linearized model. This condition is based on
the topological structure of the power system. Furthermore we
show sufficient conditions for the linearized DAE-system and
a nonlinear version of the model to have differentiation index
equal to one.

Index Terms— Differential algebraic equations, power sys-
tems, regularity, differentiation index.

I. INTRODUCTION

The integration of an increasing number of renewable
energy sources makes it necessary to analyze and simu-
late sophisticated dynamical models of power grids. One
common model of power grids on the transmission level is
the combination of the generator swing equations with the
nonlinear power balance equation resulting in a nonlinear
differential algebraic equation (DAE). Solvability of nonlin-
ear (as well as linear) DAEs is in general not guaranteed and
can often only be checked ad hoc for the specific given DAE
when parameter values are known. In this paper we present a
characterization of solvability solely in terms of the topology
of the power network for the linearized DAE model. For
numerical simulation the differentiation index, which we will
shortly call index, of a DAE plays a crucial role and we also
show that any solvable linearized DAE model of the power
system is index one. Furthermore, we extend this index one
characterization to a simplified nonlinear DAE model. There
are similar investigations concerning the index for circuit
models in [12] and [15], but to the authors’ best knowledge,
these topological methods have so far not been applied on
models of power networks.

Nonlinear DAE models of power grids as well as their lin-
earization have been studied frequently in the past decades.
One of the first textbooks on the generator equations (the
swing equations) is [4]. In this book a comprehensive analy-
sis, derivation and mechanical interpretation can be found
(see also [5] for a more general framework). The power
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flow equations are used to carry out a load flow analysis,
which is one of the most frequent routines performed for
power system operation and planning. A good introduction,
derivation and analysis regarding this topic can be found
e.g. in [1]. Finally, the combination of these models, which
is also sometimes referred to as swing equations, was used
for investigations of e.g. bifurcations in power systems ([6]),
observer design ([9], [10]) or cyber-physical security ([7]).

This paper is structured as follows. In the second chapter
we introduce the nonlinear model and its linearized version
along with a graph theoretical interpretation of the power
network. Also definitions of regularity and the index are
given. The third chapter contains the main mathematical
result, which is a characterization of regularity in terms of
the topology of the power network. In the fourth chapter we
show that in the linear case the index equals one if the system
is regular. Furthermore for a nonlinear version of the model
we give a sufficient condition for the index to be equal to
one. Afterwards we present an example in chapter five and
finally a conclusion.

Throughout this paper we denote for some n,m ∈ N
the identity matrix by In ∈ Rn×n, a vector by α =
[α1, . . . , αn]> ∈ Rn and a Matrix by A = [Aij ]

n,m
i,j=1 ∈

Rn×m. Furthermore we denote the polynomial ring over a
field F by F[s] and the field of rational expressions over a
field F by F(s). Evaluations of F (s) ∈ F[s] and G(s) ∈ F(s)
at some value λ ∈ C are denoted by F (λ) and G(λ)
respectively.

II. MATHEMATICAL MODEL AND PRELIMINARIES

We consider a power system consisting of synchronous
generators and loads, both of which are connected to buses.
These buses are interconnected by transmission lines. The
generators are represented by constant voltage behind tran-
sient reactance models and the loads are assumed to be inde-
pendent from the system variables and also can be viewed as
poorly controllable renewable infeed, such as photovoltaic or
wind energy. Transmission lines are represented by the well-
known Π-models. The system of equations which we obtain
from the combination of these models contains ordinary dif-
ferential equations (ODEs), describing the dynamic behavior
of the generators, and algebraic equations, describing the
power flow between the buses. Together the ODEs and the
algebraic equations form a system of DAEs.

A. The nonlinear model

Consider a power network consisting of n generators,
connected to n generator buses, and m load buses. Note,



that in the literature it is often assumed that there is no
load connected to the generator buses, but for the results
in the following chapters this assumption is not required.
The n + m buses are ordered such that the generator buses
have indices i = 1, 2, . . . , n and the load buses have indices
i = n+ 1, n+ 2, . . . , n+m. The generators are represented
by constant voltage behind transient reactance models (see
[4], [5]) and the transmission lines by Π-models (see [3],
[5]).

For i = 1, . . . , n, let Mi > 0 be the inertia, Di > 0 the
damping coefficient, Zi > 0 the transient reactance, V 0

i > 0
the constant internal voltage modulus, αi(t) the rotor angle
and ωi(t) the angular frequency at time t ∈ R of the i-th
generator (modeled as a synchronous machine). Furthermore
for i, j = 1, . . . , n + m let Gij ≥ 0 and Bij ≥ 0 be the
conductance and susceptance between bus i and j. Finally, let
Vi(t) be the voltage modulus and θi(t) be the voltage angle
at the i-th bus at time t. The nonlinear differential equations
representing the dynamic behavior of the generators for i =
1, . . . , n are

α̇i(t) = ωi(t),

Miω̇i(t)=Pg,i(t)−Diωi(t)−
V 0
i Vi(t)

Zi
sin(αi(t)− θi(t)),

where the input Pg,i(t) is the mechanical power applied
to the i-th generator. Let Pi(t) and Qi(t) be the real and
the reactive power infeed at the bus i representing time-
dependent loads. Then we can write down the second part of
the DAE consisting of the nonlinear equations for real and
reactive power flow, which for i = 1, . . . , n are given by

Pi(t) =

m+n∑
j=1

Vi(t)Vj(t)[Bij sin(θi(t)− θj(t))

+Gij cos(θi(t)− θj(t))]

− V 0
i Vi(t)

Zi
sin(αi(t)− θi(t)),

Qi(t) =

m+n∑
j=1

Vi(t)Vj(t)[Gij sin(θi(t)− θj(t))

−Bij cos(θi(t)− θj(t))]

− Vi(t)
2

Zi
+
V 0
i Vi(t)

Zi
cos(αi(t)− θi(t))

and for i = n+ 1, . . . , n+m by

Pi(t) =

m+n∑
j=1

ViVj [Bij sin(θi(t)− θj(t))

+Gij cos(θi(t)− θj(t))],

Qi(t) =

m+n∑
j=1

ViVj [Gij sin(θi(t)− θj(t))

−Bij cos(θi(t)− θj(t))].

Here the terms V 0
i Vi(t)
Zi

sin(αi(t) − θi(t)) and (Vi(t))
2

Zi
−

V 0
i Vi(t)
Zi

cos(αi(t) − θi(t)) represent the real and reactive
power infeed into the network by the i-th generator.

Let x1 := [αT , ωT ]T , x2 := [θT , V T ]T , u1 = Pg ,
u2 = [PT , QT ]T , where α(t), ω(t), Pg(t) ∈ Rn and
θ(t), V (t), P (t), Q(t) ∈ Rn+m are vectors with the cor-
responding entries as introduced above, then the above
equations can be written compactly as a semi-explicit DAE
of the form

ẋ1 = f(x1, x2, u1),

0 = g(x1, x2, u2),
(1)

with corresponding functions f : R2n × R2(n+m) × Rn →
R2n, g : R2n × R2(n+m) × Rn+m → R2(n+m).

B. The linearized model

For simplification of (1) we assume that V 0
i = 1 (per unit)

for i = 1, . . . , n and that the voltage moduli are regulated
to be constantly equal to one: Vi(t) = 1 (per unit) for i =
1, . . . , n + m and all t ∈ R. Furthermore, assume that the
lines are lossless, i.e. Gij = 0 for all i, j = 1, . . . , n + m.
Then we can linearize the equations around αi − θi = 0
for i = 1, . . . , n and θi − θj = 0 for i, j = 1, . . . , n + m.
To obtain the linearized equations we define the diagonal
matrices M := diag(M1, . . . ,Mn), Z := diag(Z1, . . . , Zn),
D := diag(D1, . . . , Dn), the admittance matrix B = [Bij ]
and the network matrix

R := −diag

(
n+m∑
k=1

B1k, . . . ,

n+m∑
k=1

Bn+m,k

)
+B, (2)

R =:

[
R1 R2

R3 R4

]
,

where R1 ∈ Rn×n, R2, R
T
3 ∈ Rn×m and R4 ∈ Rm×m.

Defining θ̂ := [θ1, . . . , θn]T , θ̃ := [θn+1, . . . , θn+m]T ,

x :=


α
ω

θ̂

θ̃

 , u :=

[
Pg
P

]

and

E :=


In 0 0 0
0 M 0 0
0 0 0 0
0 0 0 0

 , B :=


0 0
0 0
In 0
0 In+m

 ,

A :=


0 In 0 0

−Z−1 −D Z−1 0
Z−1 0 R1 − Z−1 R2

0 0 R3 R4

 ,
the linearized equation is given by

Eẋ = Ax+ Bu. (3)

C. Preliminaries

Since Bij is the susceptance between bus i and j, it
holds Bij = Bji and therefore R, as defined in (2), is a
symmetric matrix. Furthermore the sum of all off-diagonal
elements of every row of R is equal to the negative of
the corresponding diagonal element. Matrices having this



property are contained in the well-known set of diagonally
dominant matrices.

Definition 1: A matrix A ∈ Rn×n is called diagonally
dominant if and only if

|Aii| ≥ |
n∑
j=1
j 6=i

Aij |, ∀i = 1, . . . , n. (4)

It is called diagonally balanced if and only if equality holds
in (4).
An important subset of the diagonally dominant matrices is
the following:

Definition 2: Define Dn− ⊂ Rn×n to be the set of matrices
A ∈ Rn×n for which holds
(i) A is symmetric,

(ii) Aii = −
n∑
j=1
j 6=i

Aij and

(iii) Aij ≥ 0 for all i 6= j.
The minus sign in the subscript in Definition 2 is used to

denote that the diagonal elements are negative and obviously
for the Matrix R, as defined in (2), holds R ∈ Dn−.

Since a power system has a network structure it is con-
venient to view it as a graph. This network structure is
represented by the matrix R from (2), where bus i is directly
connected to bus j 6= i by a line if and only if Rij 6= 0.
Moreover we say that bus i is connected to bus j if and only
if there exists an 1 ≤ r ≤ n− 2 and a subset {i1, . . . , ir} ⊂
{1, . . . , n}, such that Rii1 ·Ri1i2 · · · · ·Rinj 6= 0. Hence the
matrix R has a structure similar to an adjacency matrix of
an undirected graph. This motivates the following definition.

Definition 3: Let H ∈ Dn−. We define GH := (V, E) to
be the undirected graph represented by H where
• V := {1, . . . , n} is the set of all nodes of GH ,
• E := {(i, j) | i 6= j ∧Hij 6= 0} is the set containing all

edges of GH .
Every undirected graph GH with n nodes can be divided
into 1 ≤ ξ ≤ n nonempty connected components Cα :=
(Vα, Eα), 1 ≤ α ≤ ξ, where every connected component is
a subgraph in which any two nodes are connected to each
other by paths and connected to no additional nodes in the
graph GH .

Finally we provide the definitions of the properties we
want to show for the presented model. These are regularity
and the index.

Definition 4: A matrix pair (E,A) with E,A ∈ Rn×n is
called regular if and only if det(sE − A) is not the zero
polynomial.
We will need the following well-known relationship between
regularity and solvability of linear DAEs:

Lemma 1: The DAE Eẋ = Ax + Bu is solvable for
all sufficiently smooth u and each solution is uniquely
determined by its initial value x(0) if and only if the matrix
pair (E,A) is regular.

Proof: The proof can be carried out analogously to the
proof of [16, Theorem 6.3.2].

Definition 5 ([11]): Let the general nonlinear DAE

f(ẋ(t), x(t), t) = 0

be solvable. Then it is said to have differentiation index (or
index) µ if µ is the smallest number of differentiations

df(ẋ(t), x(t), t)

dt
= 0, . . . ,

dµf(ẋ(t), x(t), t)

dtµ
= 0,

such that one can only by algebraic manipulations obtain
an explicit expression for ẋ. In particular, the semi-explicit
DAE (1) has index 1 if the Jacobian matrix ∂g(x1,x2,u2)

∂x2
is

invertible for all relevant x1, x2, u.

III. SOLVABILITY OF THE LINEARIZED MODEL

We can now present our main result concerning the
solvability of the linearized equation.

Theorem 1: The linearized equation (3) is solvable for
all sufficiently smooth inputs u and its solution is uniquely
determined by the initial value x(0) if and only if every load
node of the network graph is connected to a generator node.

In order to prove Theorem 1, we need two technical
lemmas. Firstly we need to prove invertibility of an important
class of matrices, closely related to the network graph.

Lemma 2: Let R ∈ Dn+m− be given by (2) for given
susceptances Bij of a power network and let GR = (VR, ER)
be the corresponding undirected graph of the power network.
Then the following three statements are equivalent:

(i) R − Q is invertible for any Q =
diag(q1, . . . , qn, 0, . . . , 0) ∈ Rn+m×n+m with
qi > 0 for all i = 1, . . . , n.

(ii) There is no connected component of GR with nodes
only contained in {n+ 1, n+ 2, . . . , n+m}.

(iii) Any load bus of the power network is connected to at
least one generator bus.

Proof: The equivalence of (ii) and (iii) is obvious, hence
it remains to be shown that (i) is equivalent to (ii). For any
x ∈ Rn+m it holds

xTRx =

n+m∑
i=1

n+m∑
j=1

Rijxixj

Def.2,(i)
=

n+m∑
i=1

Riix
2
i + 2

n+m∑
i=2

i−1∑
j=1

Rijxixj

Def.2,(ii)
= −

n+m∑
i=1

n+m∑
j=1
j 6=i

Rijx
2
i + 2

n∑
i=1

i−1∑
j=1

Rijxixj

= −
n+m∑
i=1

i−1∑
j=1

Rijx
2
i −

n+m∑
i=1

n+m∑
j=i+1

Rijx
2
i

+ 2

n+m∑
i=1

i−1∑
j=1

Rijxixj

Def.2,(i)
= −

n+m∑
i=2

i−1∑
j=1

Rijx
2
i −

n+m∑
i=2

i−1∑
j=1

Rijx
2
j



+ 2

n+m∑
i=2

i−1∑
j=1

Rijxixj

= −
n+m∑
i=2

i−1∑
j=1

Rij(xi − xj)2
Def.2,(iii)
≤ 0.

Thus R is negative semi-definite. Now, defining

Ψ1(x) :=

n+m∑
i=2

i−1∑
j=1

Rij(xi − xj)2 and

Ψ2(x) :=

n∑
i=1

qix
2
i ,

we obtain

xT (R−Q)x = −(Ψ1(x) + Ψ2(x)), (5)

where Ψ1(x) ≥ 0 and Ψ2(x) ≥ 0 for arbitrary x ∈ Rn+m.
Therefore also R−Q is negative semi-definite.
Furthermore we have

Ψ1(x) + Ψ2(x) = 0 ⇔ Ψ1(x) = 0 ∧ Ψ2(x) = 0.

The summands of the right-hand side of (5) have the prop-
erties

Ψ1(x) = 0 ⇔ ∀(i, j) ∈ ER : xi = xj , (6)
Ψ2(x) = 0 ⇔ ∀i ∈ {1, . . . , n} : xi = 0. (7)

Let GR be divided into 1 ≤ ξ ≤ n connected components
Cα := (Vα, Eα), 1 ≤ α ≤ ξ. It remains to be shown that

∀x ∈ R : [Ψ1(x) = 0 ∧Ψ1(x) = 0 ⇒ x = 0]

⇔ ∀α ∈ {1, . . . , ξ} : Vα ∩ {1, 2, . . . , n} 6= ∅.
(8)

“⇐”: According to (7) from Ψ2(x) = 0 it follows that xi = 0
for all i = 1, . . . , n. Consider now xi with i ∈ {n+1, . . . , n+
m} and the connected component Cα containing node i.
Since Vα ∩ {1, . . . , n} there exists j ∈ {1, 2, . . . , n} and a
path in the graph Cα connecting node i with node j, hence
invoking Ψ1(x) = 0 and (6) we conclude xi = xj = 0.
“⇒” (by contradiction): Assume there exists a connected
component Cα∗ = (Vα∗ , Eα∗) with Vα∗ ⊆ {n + 1, . . . , n +
m}. Define x∗, such that

x∗,i =

{
1, i ∈ Vα∗ ,

0, i ∈ V \ Vα∗ .

Then from (6) and (7) it follows that Ψ1(x∗) = 0 = Ψ2(x∗),
but x∗ 6= 0, which is the sought contradiction.

Remark 1: Lemma 2 can also be applied to −R + Q
instead of R − Q and there are two theorems in literature,
which are directly related to it. They both deal with slightly
more general matrices.
• A well-known theorem (see e.g. [14]) says that “an

irreducible, diagonally dominant matrix A is invertible
if and only if at least one diagonal element is strictly
larger than the sum of the off-diagonal elements of the
corresponding row”. Applying this to our setting we
can see that the matrix in Lemma 2 is irreducible if

and only if the graph is connected i.e. consists of only
one connected component.

• In [13] it is shown that the equivalent invertibility
condition of Lemma 2 is also a sufficient invertibility
condition for matrices which are more general than the
matrices considered in Lemma 2. It says: “Let A ∈
Cn×n be diagonally dominant and let for the rows i with
i ∈ J ⊂ {1, . . . , n} hold strict inequality in (4). Then R
is invertible if for each i 6∈ J there exists a sequence of
nonzero elements of A of the form Aii1 , Ai1i2 , . . . , Airj
with j ∈ J .” In contrast to Lemma 2 the proof in [13] is
made by permutations and with so-called M-matrices.
Assuming symmetry, real valued matrix entries and the
condition on the signs of the entries simplifies not only
the proof for the sufficient condition, but also makes it
possible to prove the condition to be necessary.

We need a second lemma which provides a rather technical
sufficient and necessary condition for the regularity of (3).

Lemma 3: Let (3) be given and define L(s) ∈ (R(s))n×n

L(s) := −R+

[
Z−1 − (s2MZ2 + sDZ2 + Z)−1 0

0 0

]
,

then the matrix pair (E,A) from (3) is regular if and only if
det(L(s)) is not the zero polynomial.

Proof: First note, that det(s2MZ2 + sDZ2 + Z) =
det(s2MZ + sDZ + I) det(Z) is not the zero polynomial
because Z is invertible, hence L(s) is well-defined. We
define the rational matrices Q1(s) ∈ (R[s])3n+m×3n+m and
Q2(s) ∈ (R(s))3n+m×3n+m as

Q1(s) :=


In 0 0 0

Ms+D In 0 0
0 0 In 0
0 0 0 In+m

 and

Q2(s) :=


In 0 0 0
0 In 0 0
0 (s2MZ + sDZ + I)−1 In 0
0 0 0 In+m

 ,
and obtain

Q2(s)Q1(s)(sE− A) =:

T1(s)

[
0 0

−Z−1 0

]
0 T2(s)

 ,
where T1(s) ∈ (R[s])2n×2n and T2 ∈ (R(s))n+m×n+m,
with

T1(s) :=

[
sIn −In

s2M + sD + Z−1 0

]
and

T2(s) := −R+

[
Z−1 − (s2MZ2 + sDZ2 + Z)−1 0

0 0

]
.

Since det(Q1(s)) = det(Q2(s)) = 1, it holds

det(sE− A) = det(T1(s)) det(T2(s)),

with det(T1(s)) = det(s2M + sD+Z−1), which is not the
zero polynomial. Hence it follows that (E,A) is regular if
and only if T2(s) is not the zero polynomial.



With Lemma 2 and Lemma 3 we now have the tools to
finally prove Theorem 1.

Proof: [Proof of Theorem 1] Due to Lemma 1 unique
solvability of the DAE (3) is equivalent to regularity of the
matrix pair (E,A) which in view of Lemma 3 is equivalent
to the existence of λ ∈ C such that L(λ) given there is
invertible. Hence we have to show the following equivalence:

Any load node is connected to a generator node
⇔ ∃λ ∈ C : L(λ) is invertible.

For that, let Q(s) ∈ (C(s))n+m×m+m with

Q(s) :=

[
Z−1 − (s2MZ2 + sDZ2 + Z)−1 0

0 0

]
,

which is a diagonal rational matrix with

Qii(s) =
1

Zi
− 1

s2MiZ2
i + sDiZ2

i + Zi
,∀i = 1, . . . , n.

“⇒”: Due to positivity of Zi, Mi, Di it follows that Qii(λ) >
0 for all real λ > 0. Hence, noting that L(s) = R − Q(s),
we can conclude from Lemma 2 that from the property that
every load bus is connected to some generator bus it follows
that L(λ) is invertible for all real λ > 0.
“⇐”: Assume that there exists a connected component of
the network graph that doesn’t contain a generator. Then, by
Lemma 2, L(s) = R − Q(λ) is not invertible for any real
λ > 0. Since det(L(s)) is a rational function vanishing on
the positive real line it follows that det(L(s)) has infinitely
many zeros, hence L(s) is the zero polynomial and we cannot
find any λ ∈ C such that L(λ) is invertible.

IV. DIFFERENTIATION INDEX

When dealing with solvability also in the numerical sense,
it is important to analyze the index of the considered DAE
(see e.g. [2]). Roughly speaking, the higher the index is, the
more involved it is to solve the equations. Therefore it is
preferable to have an index one system, which we show in
the following theorem to be the case for (3) if regularity is
provided.

Theorem 2: Let the matrix pair (E,A) from (3) be regular,
then the DAE has index one. In particular, unique solvability
of the linear DAE model (3) of a power network already
implies index one.

Proof: Since (3) is a linear semi-explicit DAE, the index

equals one if R−
[
Z−1 0

0 0

]
is invertible. By Theorem 1 and

Lemma 2, this is the case if regularity is given.
It is desirable to have a similar result as Theorem 2 not

only for the linearized, but also for the nonlinear model
presented in Section II-A. The general case is still work
in progress, but we are able to characterize the index-one-
property for a simplified nonlinear version of the nonlinear
DAE.

For the simplified nonlinear model of the power network
we assume analogously as for the linearized model that the
lines are lossless and all bus voltages are constantly one.

However, we do not assume anymore that the angle differ-
ences are close to zero; we relax this assumption and assume
instead that they are bounded by π/2. Since in the nonlinear
framework there is no such easy regularity condition, we
have to assume that the DAE is uniquely solvable, such that
the index is defined. Under these assumptions we can state
the following Lemma.

Lemma 4: Consider the nonlinear semi-explicit DAE (1)
with Vi(t) = 1 for all t ∈ R, i = 1, . . . , n, Gij = 0 for all
i, j = 1, . . . , n + m and neglected reactive power flow, that
is we consider the following DAE:

α̇i = ωi, (9a)

Miω̇i = Pg,i −Diωi −
V 0
i

Zi
sin(αi − θi), (9b)

0 =

m+n∑
j=1

Bij sin(θi−θj)−
V 0
i

Zi
sin(αi−θi)− Pi, (9c)

for i = 1, . . . , n and

0 =

m+n∑
j=1

Bij sin(θi − θj)− Pi, (9d)

for i = n+ 1, . . . , n+m.

Assume the DAE (9) is uniquely solvable and

|αi − θi| < π/2 for i = 1, . . . , n, and (10)
|θi − θj | < π/2 for i, j = 1, . . . , n+m. (11)

Then the DAE (9) has index one if from every load node of
the network graph there exists at least one path to a generator
node.

Proof: We write the algebraic equations (9c) and
(9d) compactly as 0 = g(α, ω, θ, P ) with corresponding
function g : Rn × Rn × Rn+m × Rn+m → Rn+m. Then by
Definition 5 the semi-explicit nonlinear DAE has index one,
if the Jacobian matrix ∂g

∂θ is non-singular, which we show in
the following. To do so, we partition g in two additive terms

g(α, ω, θ, P ) =: h̃(α, θ) + ĥ(θ, P ),

with h̃ : Rn ×Rn+m → Rn+m, where for i = 1, . . . , n+m

h̃i(α, θ) :=

{
−V

0
i

Zi
sin(αi − θi), i ≤ n,

0, otherwise

and ĥ : Rn+m×Rn+m → Rn+m, where for i = 1, . . . , n+m

ĥi(θ, P ) :=

n+m∑
k=1

Bik sin(θi − θk)− Pi.

Then it holds for the Jacobian matrix ∂g
∂θ = ∂h̃

∂θ + ∂ĥ
∂θ that

∂h̃i
∂θj

=

{
V 0
i

Zi
cos(αi − θi), i = j ≤ n,

0, otherwise,

∂ĥi
∂θj

=


∑
k 6=j

Bik cos(θi − θk), i = j,

−Bij cos(θi − θj), j 6= i.



For any θ ∈ Rn+m and α ∈ Rn, fulfilling (10) and (11) it
holds cos(θi − θj) > 0,∀i, j = 1, . . . , n + m and cos(αi −
θi) > 0,∀i = 1, . . . , n and therefore
• −∂h̃∂θ is a diagonal matrix with −(∂h̃∂θ )ii < 0 for i =

1, . . . , n as well as (∂h̃∂θ )ii = 0 for i = n+1, . . . , n+m,
• −∂ĥ∂θ ∈ D

n+m
− .

Hence we can apply Lemma 2 and the invertibility of the
Jacobian matrix follows if any load bus is connected to a
generator bus.

V. EXAMPLE
To illustrate the results on solvability and index for the lin-

earized model, we consider the 6-bus power system with two
different topologies, as drawn in Figure 1. The parameters for

1 P1
4 P4 2 P2

3
P35

P5

6

P6

Fig. 1. A power system with 2 generator buses and 4 load buses. For
topology 1 the dashed line is assumed to be existing, for topology 2 not.

the example are similar to those used in [9] and [8]. The gen-
erator parameters are given as Z−1 := diag(0.0576, 0.625),
M := diag(0.1254, 0.034) and D := diag(0.1254, 0.068).
We consider two topologies:
1. For the first topology we assume that the dashed connec-
tion in Figure 1 exists, i.e. all buses are interconnected by
paths and the solvability condition of Theorem 1 is fulfilled.
To verify the regularity also numerically, we take

R :=



−0.08 0 0 0.08 0 0
0 −0.16 0 0.16 0 0

0 0 −0.34 0.07 0.17 0.1

0.08 0.16 0.07 −0.31 0 0
0 0 0.17 0 −0.26 0.09
0 0 0.1 0 0.09 −0.19

.

Defining the block matrices E and A as in (3), we obtain the
determinant of the pencil as

det(sE− A) = a4s
4 + a3s

3 + a2s
2 + a1s,

with coefficients a4 := 0.1834 · 10−6, a3 := 0.5501 ·
10−6, a2 := 0.5533 · 10−6 and a1 := 0.2215 · 10−6. Hence
the Matrix pair (E,A) is regular. Moreover from Theorem 2
follows that the index equals one, which indeed is true, since

det
([
R1 − Z−1 R2

R3 R4

])
= 4.7019 · 10−5.

2. For the second topology we assume that the dashed
connection in Figure 1 does not exist, i.e. the load buses
3, 5 and 6 are not connected to any generator bus. Thus the
solvability condition of Theorem 1 is not fulfilled. We verify
the singularity numerically by setting R34 := 0, R43 := 0
(consequently R33 = 0.27, R44 = 0.24) and obtain

(sE− A) · [0, 0, 0, 0, 0, 0, 1, 0, 1, 1]T = 0 for all s ∈ C,

since [RT2 , R
T
4 ]T [1, 0, 1, 1]T = 0.

VI. CONCLUSIONS

We have presented a topological characterization of the
solvability of the linearized power network equation. We
also showed that solvability implies index one which is an
important and satisfying property: in theory, this excludes
Dirac impulses in the solution and in praxis, numerical
simulations do not run into trouble. We were able to extend
this index-one characterization also to a simplified nonlinear
model of the power network; however, a characterization of
the index for the general nonlinear model is still work in
progress.
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