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Abstract— The major motivation of the averaging technique
for the switched systems is the construction of a smooth average
system whose state trajectory approximates in some sense the
state trajectory of the switched system. The effectivenessof the
averaging approach for the case of dynamic systems represented
by switched ordinary differential equations has been widely
demonstrated in the literature. In this paper it is shown that also
for switched systems whose modes are represented by means of
differential algebraic equations (DAEs) it is possible to define
an average model. An approximation result for homogenous
switched DAEs with a periodic switching signal commuting
among several modes is proposed. Numerical results confirm
the validity of the averaging approach for DAEs.

I. I NTRODUCTION

Averaging theory is an useful approach to analyze non-
linear systems. The basic idea of the classical averaging
theory exploits the time-scale separation between the time
variations of the state of a dynamical system and the time
variations of the derivative of the state. From this point of
view, it is possible to show that the dynamics of a (slowly)
time-varying system are close to those of the unaveraged
system [1]. An explicit formulation of averaging for switched
systems is possible when the switching signal is faster than
the continuous state space variables that can be considered
as slow variables. Then the system can be approximated
by a model consisting only of the slow continuous states,
that is, the average model [2], [3]. Averaging for switched
systems is a research topic which maintains its interest,
and different approaches and points of view related to the
switched system characteristics have been studied: non-
periodic switching functions [4], [5], pulse modulations [6],
dithering [7], effects of exogenous inputs [8], hybrid systems
framework [9]. The paper [10] presents an overview on
the averaging results for switched systems which commute
among modes each representable by means of possibly
nonlinear ordinary differential equations. Averaging of fast
switching systems is also an effective technique used in many
engineering applications [11]. However in modeling switched
systems a representation by means of switching ordinary
differential equations (ODEs) might limit the descriptionof
switched systems behavior. For instance a switched system
characterized by modes with different algebraic constraints,
which may imply state jumps at the switching time instants,
cannot be represented by means of switched ODEs. In
this case one can use a representation through switched
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differential algebraic equations (DAEs) [12]–[14]. Also in the
case of switched DAEs an average model can be introduced
and under certain assumption an approximation result can
be proved. In [15], by considering the particular case of
a switched DAE with two modes, making the assumption
that the consistency projectors commute we have shown that
an average model exists and the solutions of the switched
DAE converge to the average solution when the switching
frequency increases. In this paper we extend the averaging
result presented in [15] by considering a switched DAEs
with multiple modes. The approximation results presented
here is not a straight forward extension of the proof idea to
the case of two modes because the presence of more than
two consistency projectors in the solutions of the switched
DAEs complicates the analysis and makes the proof much
more involved.

The paper is organized as follows. Section II presents the
class of systems under investigation and a brief reminder on
the solution theory for switched DAEs. Section III discusses
the averaging approach for switched DAEs introducing the
features of the average model. By assuming that the con-
sistency projectors commute we show in Section IV that an
average model exists and the solutions of the switched DAE
converge to the average solution for increasing switching
frequency. In Section V an example is presented illustrating
our theoretical results.

II. SWITCHED DIFFERENTIAL ALGEBRAIC EQUATIONS

A switched linear differential algebraic equation (switched
DAE) is a system consisting of a family of linear DAEs and
a policy that at each time instant selects the active subsystem
among a set of possible modes. The selection policy is
usually described by means of aswitching function. In this
paper we consider homogeneous linear switched DAEs of
the form [12]

Eσẋ = Aσx (1)

with initial condition x(t−0 ) = x0. The switching function
σ(t) : [0,∞) → Σ is a piecewise constant right-continuous
function, that selects at each time instantt the index of the
active mode from the finite index setΣ = {1, 2, . . . , P} and
Ei, Ai ∈ R

n×n are constant matrices for eachi ∈ Σ.

A. The quasi-Weierstrass form and consistency projectors

For each mode, the system (1) can be represented by
means of the following non-switched DAE

Eẋ = Ax (2)



with E and A ∈ R
n×n and differentiable solutionsx(t) :

R → R
n . When the matrixE is invertible, (2) reduces to a

more familiar ordinary differential equation.
Assume that the matrix pair(E,A) is a regular, i.e.

det(sE − A) is not the zero polynomial. Then there exist
invertible transformation matricesS andT∈ R

n×n that put
the matrices in the quasi Weierstrass form [16]

(SET, SAT ) =
(

[

I 0
0 N

]

,

[

J 0
0 I

]

)

(3)

whereN ∈ R
n2×n2 ,with 0 6 n2 6 n, is a nilpotent matrix

andJ ∈ R
n1×n1 , with n1 = n − n2, is some matrix andI

is the identity matrix of appropriate size. The transformation
matricesT andS can be obtained through the so called Wong
sequences [17]. It is easy to see that a DAE in Weierstrass
form consists of two independent parts: an “ODE part” given
by

ẏ = Jy (4)

and a “pure DAE part” given by

Nż = z, (5)

where the pure DAE part only has the solutionz = 0. Hence
the classical solutions of a regular DAE(E,A) are given by
the ODE (4) and the coordinate transformation

x = T

(

y
0

)

. (6)

This leads to the definition of the so called consistency
projectors. The consistency projectorΠ of the matrices pair
(E,A) is defined as

Π = T

[

I 0
0 0

]

T−1, (7)

where the block sizes correspond to the block size in
the quasi Weierstrass form (3). The consistency projector
characterizes the space within all solutions of (2) evolve,
i.e. the consistency space isimΠ, otherwise it only plays
a role when considering inconsistent initial values as they
occur when switching between different DAEs. To describe
the DAE solution it is possible to introduce the flow matrix

Adiff = T

[

J 0
0 0

]

T−1. (8)

Note that, due to the special structure of the consistency
projectorΠ andAdiff , the following conditions hold

AdiffΠ = Adiff = ΠAdiff . (9)

By using the flow matrix it is possible [18] to introduce an
ODE system

ẋ = Adiffx, (10)

and show that each solution of (2) also solves (10).

B. Solutions of switched DAEs

Consider the switched DAE (1). To ensure the uniqueness
of solutions we assume that each matrix pair(Ei, Ai) is
regular, and we assume knowledge of the quasi-Weierstrass
form (3) with corresponding transformation matricesTi, Si,
consistency projectorsΠi and flow matricesAdiff

i . Moreover
we assume impulse-free solutions for any switching signal,
which can be characterized [12] by the condition1

Ej(I −Πj)Πi = 0, ∀i, j ∈ {1, 2, . . . , P}. (11)

Any solution of each individual DAEEiẋ = Aix evolves
within the consistency space starting from the time instantti
in which theith mode has been activated. At the switching
time ti, a continuous extension of the solution of the previous
mode does not exist in general, because the valuex(t−i )
need not be within the consistency space corresponding to
DAE Eiẋ = Aix active after the switch. Therefore it is
necessary to allow for solutions with jumps. Indeed, it can be
shown [12] that a jump from an inconsistent to a consistent
initial value is uniquely determined by using the consistency
projectorΠi corresponding to the system(Ei, Ai) activated
at the switching timeti:

x(ti) := x(t+i ) = Πix(t
−

i ). (12)

Hence, invoking (10) and (11), the solutionx on the interval
[ti, ti+1) is given by

x(t) = eA
diff
i

(t−ti)x(t)

= eA
diff
i

(t−ti)Πix(t
−

i ), t ∈ [ti, ti+1).
(13)

Then the solution of the switched DAE (1) can be represented
by cascading the solutions in the form (13) corresponding to
the sequence of modes.

III. AVERAGING FOR SWITCHEDDAES

Consider the switched DAE (1) on the time interval[0,∞)
and assume thatσ : [0,∞) → {1, 2, . . . P} is periodic with
periodp and, without loss of generality, also assume that it
is increasing on each period:

σ(t) =











































1, t ∈ [kp, (k + d1)p),

2, t ∈ [(k + d1)p, (k + d1 + d2)p),
...

P − 1, t ∈ [(k + d1 . . .+ dP−2)p,

(k + d1 + . . .+ dP−1)p),

P, t ∈ [(k+d1+. . .+dP−1)p, (k+1)p),

(14)

with k ∈ N, dip is the time duration of theith mode within
the periodp and di ∈ (0, 1) with

∑P
i=1 di = 1 is the

duty cycle of theith mode. For switched DAEs a crucial

1Due to the special switching signal considered here, it suf-
fices to check condition (11) only for the index pairs(i, j) ∈
{(1, 2), (2, 3), . . . , (P − 1, P ), (P, 1)}. On the other hand when we want
to allow arbitrary initial values att = 0 we have to assume additionally
that the nilpotent matrix in the quasi-Weierstrass form of(E1, A1) is zero.
Anyhow, the forthcoming analysis is independent on the presence of Dirac-
impulses, c.f. [15, Rem. 1]



assumption to guarantee the convergence to trajectories ofan
average model, is that these trajectories must evolve within
the intersection of the consistency spaces otherwise the
jumps will not converge to zero as the frequency increases.
Furthermore, at least one consistency projector must jump
into the intersection, otherwise the limit cannot be within
the intersection. It turns out that the crucial assumption is
commutativity of the consistency projectors [19]:

ΠiΠj = ΠjΠi ∀i, j ∈ {1, 2, . . . , P}. (15)

Let us define the matrix given by the product of all consis-
tency projectors matrices:

Π∩ := Π1Π2 · · ·ΠP−1ΠP . (16)

Then by applying Lemma 1, in Appendix A, one obtains

imΠ∩ = imΠ1 ∩ imΠ2 . . . ∩ imΠP−1 ∩ imΠP . (17)

The candidate smooth average system for the approxima-
tion of the behavior of the switched system (1) is defined
as

ẋav = Aavxav (18)

with initial conditionxav(t0) = Π∩ x0 and where

Aav := Π∩A
diff
av Π∩

:= Π∩(A
diff
1 d1 +Adiff

2 d2 + . . .+Adiff
P dP )Π∩.

(19)

Note that the following conditions hold

Π∩AavΠ∩ =Aav (20a)

Π∩ÃΠ∩ =Aav, (20b)

with

Ã := Π∩A
diff
1 d1 +ΠP . . .Π2A

diff
2 Π1d2 + . . .

+ΠPΠP−1A
diff
P−1ΠP−2 . . .Π1dP−1 +Adiff

P Π∩dP .
(21)

In the next section it will be shown that the properties (20)
are important to prove the approximation result.

IV. M AIN RESULT

Before stating our main result let us recall the “big O
notation”.

Definition 1 (Big O notation): Consider two functions
f, g : (0,∞) → V , whereV is some normed vector space
with norm ‖ · ‖. We say thatf(p) is anO(g(p)) function if,
and only if, there exist constantsα and p̄ > 0 such that

‖f(p)‖ 6 α‖g(p)‖ for all 0 < p 6 p̄. (22)
With some abuse of notation in the following we indicate
with O(g(p)) a generic function which is anO(g(p)) func-
tion. We are now ready to state our main result.

Theorem1: Consider the switched DAE system (1) with
P modes satisfying the following assumptions

(i) the switching signalσ is periodic of periodp and given
by (14) with di ∈ (0, 1) ∀ i = 1, . . . , P ;

(ii) the matrix pairs(Ei, Ai), i = 1, . . . , P , are regular
with corresponding consistency projectorsΠi and flow
matricesAdiff

i ;
(iii) the consistency projectors commute, i.e. (15) holds;in

particularΠ∩ fulfills (17);
then for any given̄t > 0 andx0 ∈ R

n the following holds

‖x(t)− xav(t)‖ = O(p) , ∀t ∈ (0, t̄ ], (23)

wherexav is the solution of (18) with the same initial value
as (1).

Proof: Considering the arbitrary but fixed time instant
t∗ ∈ (0, t̄ ]. Choosek ∈ N such thatt∗ = kp + τ for
τ ∈ [0, p). Note thatt∗ > 0 implies thatk > 0 for sufficiently
small p. The solution of the switched DAE can then be
written

x(t∗) = M̃(τ)
(

eA
diff
P

dP pΠP · · · eA
diff
2

d2pΠ2e
Adiff

1
d1pΠ1

)k

x0,

(24)
where

M̃(τ) :=















































eA
diff
1

τΠ1

if 0 6 τ 6 d1p

eA
diff
2

(τ−d1p)Π2e
Adiff

1
d1pΠ1

if d1p < τ 6 (d1 + d2)p
...
eA

diff
P

(τ−dP−1p−...−d1p)ΠP · · ·Π2e
Adiff

1
d1pΠ1

if (d1 + d2 + . . .+ dP−1)p < τ < p

For a matrix exponential one can write the following rela-
tion [20]

eAp = I +Ap+O(p2) (25)

By applying (25) to the exponentials in (24) we obtain

x(t∗) =M̃(τ)[(I +Adiff
P dP p+O(p2))Πm . . . (I +Adiff

2 d2p

+O(p2))Π2(I +Adiff
1 d1p+O(p2))Π1]

kx0

=M̃(τ)(Π∩ +Π∩A
diff
1 d1p+ΠP . . .Π2A

diff
2 Π1d2p

+ . . .+ΠPΠP−1A
diff
P−1ΠP−2 · · ·Π1dP−1p

+Adiff
P Π∩dP p+O(p2))kx0

=M̃(τ)(Π∩ + Ãp+O(p2))kx0

≡M(τ)(Π∩ + Ãp+O(p2))k−2N(p)x0, (26)

whereÃ is defined by (21) and

N(p) := Π∩ + Ãp+O(p2) = Π∩ +O(p), (27)

and

M(τ) := M̃(τ)(Π∩ + Ãp+O(p2)) = Π∩ +O(p), (28)

where for the (28) the following relations have been used

M̃(τ) :=











































Π1 +O(τ) = Π1 +O(p)
if 0 6 τ 6 d1p

Π2Π1 +O(τ − d2p) = Π2Π1 +O(p)
if d1p < τ 6 (d1 + d2)p

...
Π∩ +O(τ−dP−1p−. . .−d1p) = Π∩+O(p)

if (d1+d2+. . .+dP−1)p < τ < p.



By using (27)–(28) and Lemma 2 (see Appendix B), the
expression (26) becomes

x(t∗) = Π∩(Π∩ + Ãp+O(p2))k−2Π∩x0 +Π∩(Π∩ + Ãp

+O(p2))k−2O(p) +O(p)(Π∩ + Ãp+O(p2))k−2Π∩

= Π∩(Π∩ + Ãp+O(p2))k−2Π∩x0 +Π∩(Π∩

+O(p))k−2O(p) + O(p)(Π∩ +O(p))k−2Π∩

= Π∩(Π∩ + Ãp+O(p2))k−2Π∩x0 +O(p) (29)

Consider now the solution of the average model (18)

xav(t
∗) =eAavt

∗

Π∩x0

=M̃av(τ)e
AavkpΠ∩x0, (30)

with

M̃av(τ) := eAavτ . (31)

By using (25), the state (30) can be written as

xav(t
∗) =M̃av(τ)

(

Π∩ +Aavp+O(p2)
)k

x0

=Mav(τ)
(

Π∩ +Aavp+O(p2)
)k−2

Nav(p)x0,
(32)

with

Mav(τ) := M̃av(τ)
(

Π∩ +Π∩A
diff
av Π∩p+O(p2)

)

= Π∩ +O(p), (33)

and

Nav(p) := (Π∩ +Aavp+O(p2))Π∩ = Π∩ +O(p). (34)

Invoking (33) and again Lemma 2, equation (32) can be
written as

xav(t
∗) = Π∩(Π∩ +Aavp+O(p2))k−2Π∩x0

+ (Π∩ +Aavp+O(p2))k−2O(p)

= Π∩(Π∩ +Aavp+O(p2))k−2Π∩x0

+ (Π∩ +O(p))k−2O(p)

= Π∩(Π∩ +Aavp+O(p2))k−2Π∩x0 +O(p)
(35)

Indeed we have

‖x(t)− xav(t)‖ 6 ‖Π∩[(Π∩ + Ãp+O(p2))k−2

− (Π∩ +Aavp+O(p2))k−2]Π∩‖‖x0‖

+O(p) (36)

Lemma 4 (see Appendix B) and the fact thatk = O(1/p),
(36) becomes

‖x(t)− xav(t)‖ = O(p). (37)

V. SIMULATION RESULTS

To show the effectiveness of the proposed approach con-
sider the following numerical results.

Example1: Let

(E1, A1) =
(





1 0 0
0 1 0
0 0 0



 ,





0 −2 0
1 −3 0
0 1 1





)

, (38)

(E2, A2) =
(





1 0 0
0 1 0
0 0 1



 ,





−3 0 0
1 −4 0
−1 −4 4





)

, (39)

(E3, A3) =
(





0 1 0
0 0 1
0 0 0



 ,





0 −2 0
0 −1 1
1 1 0





)

. (40)

The second subsystem is an ODE, soT2 = S2 = Π2 = I
andAdiff

2 = A2,, instead the matrix pairs(T1, S1), (T3, S3)
are

(T1, S1) =
(





1 0 0
0 1 0
0 −1 1



 ,





1 0 0
0 1 0
0 0 1





)

,

(T3, S3) =
(





1 0 1
−1 0 0
0 1 0



 ,





−1 0 0
0 1 0
0 0 1





)

,

Π1 =





1 0 0
0 1 0
0 −1 0



 , Π3 =





0 −1 0
0 1 0
0 0 1



 ,

Adiff
1 =





0 −2 0
1 −3 0
−1 3 0



 , Adiff
3 =





0 2 0
0 −2 0
0 −1 1



 .

and

Π∩ =





0 −1 0
0 1 0
0 −1 0



 .

By choosingd1 = 0.5, d2 = 0.3 andd3 = 0.2 the average
matrix is

Aav =





0 39/10 0
0 −39/10 0
0 39/10 0



 . (41)

and

Ã =





−4/5 31/10 0
4/5 −31/10 0
−4/5 −13/10 0



 . (42)

The solution of the corresponding switched DAEs described
by (38)–(40), and that of the average system (18), (41) are
shown in Fig. 1 with a switching periodp = 0.1 s.

By decreasing the switching period the solution of the
switched DAE and that of the average model become close
to each other as shown in Fig. 2, where a switching period
p = 0.02 s is chosen.
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Fig. 1. Simulation results of Example (1) with p=0.1 s: (a) state–space
solutions, (b) time evolution ofx1, (c) time evolution ofx2, (d)time
evolution ofx3.
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Fig. 2. Simulation results of Example (1) with p=0.02 s: (a) state–space
solutions, (b) time evolution ofx1, (c) time evolution ofx2, (d) time
evolution ofx3.

VI. CONCLUSIONS

This paper studied the averaging method for linear
switched differential algebraic equations (DAEs). By assum-
ing that the consistency projectors commute we define an av-
erage model in the case of the homogeneous linear switched
DAEs with the switching signal that periodically switches
between the multiple modes. The main result (Theorem 1)
says that the error between the solution of the switched
DAE and that of the corresponding average model is of the
order of the switching period. The work reported here is
a generalization of the averaging result presented in [15]
for a switched DAEs with two modes, however it is not
a trivial extension due to the presence of the consistency

projectors that can not be moved outside the switched DAEs
solution formula, as in the case of two modes. Dealing with
the averaging theory for this class of switched systems opens
many interesting lines of research. For instance it could be
of interest to study the average system to infer stability
property for the switched DAEs. Other directions of future
research could be to investigate if in the case of solutions
with impulses the average model is still valid. Also, the
definition of an average model for switched DAEs with state-
dependent switching functions is an interesting challenge.

APPENDIX

A. Image of commuting matrices

Lemma1: Consider P commuting matrices
M1,M2, . . . ,MP , with Mi such that M2

i = Mi for
i = 1 . . . (P − 1). Then the following holds

imM1M2 . . .MP = imM1 ∩ imM2 ∩ . . . ∩ imMP . (43)
Proof:

“⊆” Clearly, it holds that

imM1M2 . . .MP ⊆ imM1M2 . . .MP−1

⊆ imM1M2 . . .MP−2 ⊆ . . . ⊆ imM1,

by using that the matrixMi commutes withMj for
j = 1 . . . i− 1 we have

imM1 . . .Mi−1Mi . . .MP = imM1 . . .MiMi−1

. . .MP = imM1 . . .MiMi−2Mi−1 . . .MP

= imMiM1 . . .MP ⊆ imMiM1 . . .MP−1 ⊆

. . . ⊆ imMi,

This shows

imM1M2 . . .MP ⊆ imM1∩imM2∩. . .∩imMP .

“⊇” Consideringy ∈ imM1∩ imM2∩ . . .∩ imMP the
following holds:

y ∈ imM1 ∩ imM2 ∩ . . . ∩ imMP

⇔ ∃ x1 ∈ R
n, ∃ x2 ∈ R

n . . . xP ∈ R
n :

y = M1x1 ∧ y = M2x2 ∧ . . . ∧ y = MPxP

⇔ ∃ x1 ∈ R
n, ∃ x2 ∈ R

n . . . xP ∈ R
n :

M1x1 = M2x2 = . . . = MPxP = y

⇒ y
•

= M2
1x1

?
= M1M2x2 = . . . = M1M2

. . .Mi−1xi−1 = . . .
•

= M1M2 . . .M
2
i−1xi−1

?
= M1M2 . . .Mi−1Mixi = . . . = M1M2 . . .

MP−1xP−1 = . . .
•

= M1M2 . . .M
2
P−1xP−1

?
= M1M2 . . .MPxP

⇒ ∃ x ∈ R
n : y = M1M2 . . .MPx

⇔ y ∈ imM1M2 . . .MP ,

where for• we usedM2
i = Mi, with i = 1 . . . (P−

1), and for? Mi−1xi−1 = Mixi, with i = 2 . . . P .
This concludes the proof.



B. Lemmas needed to prove the main result

We start with a preliminary result concerning powers of
the slightly disturbed projectorΠ∩.

Lemma2: Let `(p) ∈ N such thatp`(p) = O(1) asp →
0. Then

(Π∩ +O(p))`(p) = O(1) (44)

Proof: SinceΠ∩ is a projector all finite products of
Π∩ are trivially bounded and a well known result, see e.g.
[21, Thm. 3], ensures that we can find a norm||| · ||| on R

n

such that|||Π∩||| = 1 for the induced matrix norm. Due to
the equivalence of all norms on finite dimensional space we
find a constantα1 ∈ R such that

∥

∥

∥
(Π∩ +O(p))`(p)

∥

∥

∥
6 α1

∣

∣

∣

∣

∣

∣

∣

∣

∣
(Π∩ +O(p))`(p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 α1(1 +O(p))`(p) 6 α1(1 + α2p)
α3/p

6 α1e
α2α3 = O(1).

for sufficiently smallp and whereα2, α3 ∈ R are chosen
accordingly.

Lemma3: Given the matricesΠ∩, Ã andAav, and the
periodp define the function

γ(`, p) :=Π∩(Π∩ + Ãp+O(p2))`ÃΠ∩p

−Π∩(Π∩ +Aavp+O(p2))`AavΠ∩p, (45)

with ` a positive integer. The function (45) is`O(p2) for any
integer`.

Proof: To prove our statement a recursive approach is
used. For̀ = 1 one has

‖γ(1, p)‖ =‖Π∩(Π∩ + Ãp+O(p2))ÃΠ∩p

−Π∩(Π∩ +Aavp+O(p2))AavΠ∩p‖

6‖Π∩ÃΠ∩ −Π∩AavΠ∩‖p

+ ‖Π∩Ã
2Π∩ − Π∩A

2
avΠ∩‖p

2 + α1p
3

=‖Π∩Ã
2Π∩ −Π∩A

2
avΠ∩‖p

2 + α1p
3 (46)

where we used (20). Thenγ(1, p) is anO(p2) function.

It is now possible to proceed with the inductive step. For
the average theorem we will be interest to the case that`
goes to infinity whenp goes to zero. Then it is important
to explicitly indicate the possible presence of` terms of a

certain order. Then by consideringγ(`+ 1, p) one obtains

‖γ(`+ 1,p)‖ = ‖Π∩(Π∩ + Ãp+O(p2))`+1ÃΠ∩p

−Π∩(Π∩ +Aavp+O(p2))`+1AavΠ∩p‖

=‖Π∩(Π∩ + Ãp+O(p2))

· (Π∩ + Ãp+O(p2))`ÃΠ∩p

−Π∩(Π∩ +Aavp+O(p2))

· (Π∩ +Aavp+O(p2))`AavΠ∩p‖

=‖Π∩(Π∩ + Ãp+O(p2))`ÃΠ∩p

+Π∩Ã(Π∩ + Ãp+O(p2))`ÃΠ∩p
2

+Π∩O(p2)(Π∩ + Ãp+O(p2))`ÃΠ∩p

−Π∩(Π∩ +Aavp+O(p2))`AavΠ∩p

−Π∩Aav(Π∩ +Aavp+O(p2))`AavΠ∩p
2

−Π∩O(p2)(Π∩ +Aavp+O(p2))`AavΠ∩p‖
�

6‖Π∩(Π∩ + Ãp+O(p2))`ÃΠ∩p

+Π∩Ã(Π∩ + Ãp+O(p2))`ÃΠ∩p
2

−Π∩(Π∩ +Aavp+O(p2))`AavΠ∩p

−Π∩Aav(Π∩ +Aavp+O(p2))`AavΠ∩p
2‖

+ α2p
3

6‖γ(`, p)‖+ ‖Π∩Ã(Π∩ + Ãp+O(p2))`ÃΠ∩‖p
2

+ ‖Π∩Aav(Π∩ +Aavp+O(p2))`AavΠ∩‖p
2

+ α2p
3

�

6‖γ(`, p)‖+ α4p
2 + α2p

3 (47)

for some constantsα2 and α3 and where for� we used
Lemma (2). Then from (47) the proof is completed.

Lemma4: Given the matricesΠ∩, Ã andAav, and the
periodp define the function

g(`, p) := Π∩[(Π∩ + Ãp+O(p2))`

− (Π∩ +Aavp+O(p2))`]Π∩ (48)

with ` a positive integer. The function (48) is`O(p2) for any
integer`.

Proof: To prove our statement a recursive approach is
used. For̀ = 1 one has

‖g(1, p)‖ =‖Π∩[(Π∩ + Ãp+O(p2))

− (Π∩ +Aavp+O(p2))]Π∩‖

6‖Π∩ÃΠ∩ −Π∩AavΠ∩‖p+ α4p
2, (49)

for some constantα4. Then by using (20) it is verified that
g(1, p) is anO(p2) function. It is now possible to proceed
with the inductive step. For the average theorem we will be
interested to the case that` goes to infinity whenp goes to
zero. Then it is important to explicitly indicate the possible
presence of̀ terms of a certain order. Then by considering



g(`+ 1, p) one obtains

‖g(`+ 1, p)‖ =‖Π∩[(Π∩ + Ãp+O(p2))`+1

− (Π∩ +Aavp+O(p2))`+1]Π∩‖

=‖Π∩[(Π∩ + Ãp+O(p2))`

· (Π∩ + Ãp+O(p2))

− (Π∩ +Aavp+O(p2))`

· (Π∩ +Aavp+O(p2))]Π∩‖

6‖Π∩[(Π∩ + Ãp+O(p2))`

− (Π∩ +Aavp+O(p2))`]Π∩‖

+ ‖Π∩(Π∩ + Ãp+O(p2))`ÃΠ∩p

−Π∩(Π∩ + Aavp+O(p2))`AavΠ∩p‖

+ α6p
2

= ‖g(`, p)‖+ ‖γ(`, p)‖+ α6p
2, (50)

for some constantα6. Then from (50) and by using the fact
that γ(`, p) is `O(p2) the proof is complete.
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