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Abstract— The major motivation of the averaging technique differential algebraic equations (DAES) [12]-[14]. Alsothe

for the switched systems is the construction of a smooth avage  case of switched DAEs an average model can be introduced
system whose state trajectory approximates in some senseeth g4 ynder certain assumption an approximation result can
state trajectory of the switched system. The effectivenessf the . .

averaging approach for the case of dynamic systems represiexul be proved. In [15]'_ by considering thg particular case. of
by switched ordinary differential equations has been widey @ switched DAE with two modes, making the assumption
demonstrated in the literature. In this paper it is shown that also  that the consistency projectors commute we have shown that
for switched systems whose modes are represented by means ofan average model exists and the solutions of the switched
differential algebraic equations (DAES) it is possible to @fine DAE converge to the average solution when the switching

an average model. An approximation result for homogenous - . .
switched DAEs with a periodic switching signal commuting frequency increases. In this paper we extend the averaging

among several modes is proposed. Numerical results confirm result presented in [15] by considering a switched DAEs

the validity of the averaging approach for DAEs. with multiple modes. The approximation results presented
here is not a straight forward extension of the proof idea to
|. INTRODUCTION the case of two modes because the presence of more than

Averaging theory is an useful approach to analyze nodWo consistency projectors in the solutions of the switched
linear systems. The basic idea of the classical averagiffAES complicates the analysis and makes the proof much
theory exploits the time-scale separation between the tinhaore involved.
variations of the state of a dynamical system and the time The paper is organized as follows. Section Il presents the
variations of the derivative of the state. From this point oflass of systems under investigation and a brief reminder on
view, it is possib|e to show that the dynamics of a (S|Ow|y}he solution theory for switched DAESs. Section Il discisse
time-varying system are close to those of the unaveragéde averaging approach for switched DAEs introducing the
system [1]. An explicit formulation of averaging for switeth features of the average model. By assuming that the con-
systems is possible when the switching signal is faster th&istency projectors commute we show in Section IV that an
the continuous state space variables that can be considef¥@rage model exists and the solutions of the switched DAE
as slow variables. Then the system can be approximatéfnverge to the average solution for increasing switching
by a model consisting only of the slow continuous statedfequency. In Section V an example is presented illustgatin
that is, the average model [2], [3]. Averaging for switchedPur theoretical results.
systems is a research topic which maintains its interest,
and different approaches and points of view related to thell. SWITCHED DIFFERENTIAL ALGEBRAIC EQUATIONS
switched system characteristics have been studied: non-,

periodic switching functions [4], [5], pulse modulatiors switched linear differential algebraic equation (switch

DAE) is a system consisting of a family of linear DAEs and

?ltherlng E]’geﬁ(?l(_:rtls of exogezgus |nputst[8], hybrid S?’“‘S a policy that at each time instant selects the active subisyst
ramework [9]. The paper [10] presents an overview o mong a set of possible modes. The selection policy is

the averaging results for switched systems which commuﬂlaSua”y described by means ofsaitching function. In this

among modgs each reprgsentablg by means_of poss'Bé(per we consider homogeneous linear switched DAEs of
nonlinear ordinary differential equations. Averaging astf the form [12]

switching systems is also an effective technique used iryman
engineering applications [11]. However in modeling switdh
systems a representation by means of switching ordina]

I'y. L . -\ . . .
differential equations (ODES) might limit the descriptiof With initial condlthn I(to.) — To. The swﬂchmg fun(_:tlon
o—r#) : [0,00) — X is a piecewise constant right-continuous

switched systems behavior. For instance a switched SyStefunction that selects at each time instarthe index of the
characterized by modes with different algebraic constsain active m,ode from the finite index sBt— {1,2 P} and
which may imply state jumps at the switching time instants A € R™™ are constant matrices?or éa«zzl.é 27
cannot be represented by means of switched ODEs. ﬁ;ﬂ“ ! '
this case one can use a representation through switch&d

E,i = Ayx 1)

The quasi-Weierstrass form and consistency projectors
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with £ and A € R™*™ and differentiable solutionsg(t) :  B. Solutions of switched DAEs

R — R™ . When the matrix is invertible, (2) reduces to @ consider the switched DAE (1). To ensure the uniqueness
more familiar ordinary differential equation. of solutions we assume that each matrix p@;, A;) is
Assume that the matrix paif£, A) is a regular, i.e. yregular, and we assume knowledge of the quasi-Weierstrass
de{sE — A) is not the zero polynomial. Then there existform (3) with corresponding transformation matricgs S;,
invertible transformation matrices and7'c R"*" that put  consistency projectord; and flow matricesA%™. Moreover

the matrices in the quasi Weierstrass form [16] we assume impulse-free solutions for any switching signal,
which can be characterized [12] by the condition
(SET, 5T) = ( L0 J 0 E
) o N|'|o I Ej(I-T)IL =0, ¥i,je {1,2,...,P}.  (11)

where N € R"2%"2 with 0 < ny < n, is a ni|potent matrix Any solution of each individual DAEE; & = A;x evolves
andJ € R™ X" with n; = n — no, is Some matrix and  Within the consistency space starting from the time instant
is the identity matrix of appropriate size. The transforiorat in which theith mode has been activated. At the switching
matricesI’ andS can be obtained through the so called Wondime¢;, a continuous extension of the solution of the previous
sequences [17]. It is easy to see that a DAE in Weierstrag3ode does not exist in general, because the valig)
form consists of two independent parts: an “ODE part” givefieed not be within the consistency space corresponding to
by DAE E;z = A;x active after the switch. Therefore it is

o 4) necessary to allow for solutions with jumps. Indeed, it can b

4 4 shown [12] that a jump from an inconsistent to a consistent
and a “pure DAE part” given by initigl value is uniquely c_zletermined by using the co_nsis;en
projectorIl; corresponding to the syste(i;, A;) activated
Ni =z, (5) at the switching time;:

N e (4 = Lo (i
where the pure DAE part only has the solutiors- 0. Hence o(ts) = 2(t7) = Mz (). (12)
the classical solutions of a regular DA, A) are given by Hence, invoking (10) and (11), the solutiaron the interval

the ODE (4) and the coordinate transformation [ti,tit1) IS given by
_ AT ty)
et V) ©6) x(t)=e | x(t) (13)
0 AT (1 —t;) -
=e ! Hi.%'(ti ), t e [ti,ti+1).

This leads to the definition of the so called consistencyhen the solution of the switched DAE (1) can be represented
projectors. The consistency projectdrof the matrices pair py cascading the solutions in the form (13) corresponding to

(£, A) is defined as the sequence of modes.
HeT [ I 8 ] 71, @ _ I1. AVERIAGING FOR SWITCHEDI-:)AE-S
Consider the switched DAE (1) on the time inter{floo)

where the block sizes correspond to the block size iAnd @ssume that: [0,00) — {1,2,... P} is periodic with
the quasi Weierstrass form (3). The consistency project§€riodp and, without loss of 'generallty, also assume that it
characterizes the space within all solutions of (2) evolveS iNcreasing on each period:

i.e. tlhe chonsistengé/ space iis I, (t)th?ryvi_f_elit olnly playtsh 1, t € [kp, (k+ d1)p),
a role when considering inconsistent initial values as they
occur when switching between different DAEs. To describe 2 tellk+dp, (k+di+d2)p),
the DAE solution it is possible to introduce the flow matrix _J:
o(t) = (14)
it J 0 P—-1,te [(k-i—dl—i-dp_g)p,
iff __ —1
A _T|:O O]T ’ (8) (k+di+...+dp-1)p),
. . P, te[(k+di+...+dpa)p, (k+1)p),
Note that, due to the special structure of the consistency ] ) ] o
projectorIl and A% the following conditions hold with & € N, d;p is the time duration of théth mode within
the periodp and d; € (0,1) with 37 d; = 1 is the
AdfTT = Adiff — 17 49 (9) duty cycle of theith mode. For switched DAEs a crucial

; FETE ; ; 1Due to the special switching signal considered here, it suf-
By using the flow matrix it is possible [18] to introduce an. "l check condition (11) only for the index paif@,j) &

ODE system {(1,2),(2,3),...,(P —1,P),(P,1)}. On the other hand when we want
7= Adf (10) to allow a}rbitrary initia}l yalues at = 0 we have to assume additionally
’ that the nilpotent matrix in the quasi-Weierstrass forn{Bf, A1) is zero.
Anyhow, the forthcoming analysis is independent on theeres of Dirac-
and show that each solution of (2) also solves (10). impulses, c.f. [15, Rem. 1]



assumption to guarantee the convergence to trajectoris of (ii) the matrix pairs(E;, 4;), « = 1,..., P, are regular
average model, is that these trajectories must evolve mwithi with corresponding consistency projectdfsand flow
the intersection of the consistency spaces otherwise the  matricesA%;

jumps will not converge to zero as the frequency increasegiii) the consistency projectors commute, i.e. (15) holds;
Furthermore, at least one consistency projector must jump  particularll fulfills (17);

into the intersection, otherwise the limit cannot be withinthen for any givert > 0 andz, € R” the following holds
the intersection. It turns out that the crucial assumpt®n i _
commutativity of the consistency projectors [19]: ‘ [2(t) — zav () ]| = O(p) ‘, vt € (0, ], (23)

LI = I,1L | Vije{1,2,...,P). (15) \;v:((e;()exav is the solution of (18) with the same initial value

Let us define the matrix given by the product of all consis-  Proof: Considering the arbitrary but fixed time instant

tency projectors matrices: t* € (0, t]. Choosek € N such thatt* = kp + 7 for
7 € [0,p). Note that* > 0 implies thatk > 0 for sufficiently
U =1L - - IIpq1lp. (16)  small p. The solution of the switched DAE can then be
written

Then by applying Lemma 1, in Appendix A, one obtains

N\ ~ Adiffdpp L Ad‘ﬁdgp Ad\ffdlp )k
im Tl = im I Nim T ... NimTp , NimTp.  (17) 20 =M() (e PHLp - e BRI e T AL ) o,

The candidate smooth average system for the approximahere 24
tion of the behavior of the switched system (1) is defined eAt;iffTHI
as if o<r < dip
with initial condition z., (o) = II~ 2o and where M(r) = it dip<7<(d+do)p
Ago = HmAgigHm . _ (19) .eAl};i.ﬁ(depflpf,,,fdlp)HP e TpeAt"dir,
=TI~ (AS"dy + AS"dy + ...+ AR dp)TTn. it (dytdot...+dp_)p<T<p
Note that the following conditions hold For a matrix exponential one can write the following rela-
A Al =A4y (20a) ton (20) e =T+ Ap+ o(p*) (25)
In Alln =Ago, (20b) By applying (25) to the exponentials in (24) we obtain
with a(t*) =M(7)[(I + AW dpp + OW*) ... (I + A" dop
A= T AT dy + Tp . AT L dy + .. +O(p*))a (1 + A" dip + O(p*))Th]F o
+pllp 1 AW Tp_o...Ihdp_1 + AW TIdp. =M (7)(In + TnAMdip + Tp .. . T AT dop
(21) 4. 4 Tpllp AW TIp_o---TLdp_1p
In the next section it will be shown that the properties (20) + A¥TI~dpp + O(p*)) 20
are important to prove the approximation result. :M(T)(Hm +Ap+ O(p?))F 0
IV. MAIN RESULT =M (7)(In + Ap + O(p*))" > N(p)0, (26)

Before stating our main result let us recall the “big Owhere A is defined by (21) and

notation”. . = o
Definition 1 (Big O notation): Consider two functions Np) =10+ Ap+0@7) =1+ Op),  (27)

fig : (0,00) = V, whereV is some normed vector spaceand
with norm|| - ||. We say that isanO function fif, ~ -
I-]I. We say thatf(p) Is anO(g(p) M() = NI(r)(TIn + Ap + O(%)) = Tln + O(p), ~ (28)

and only if, there exist constantsandp > 0 such that
~ where for the (28) the following relations have been used
[f)l < ellglp)| foralld<p<p. (22)

With some abuse of notation in the following we indicate I + Q(T) =1L + O(p)
with O(g(p)) a generic function which is af(g(p)) func- if 0<7<dip
tion. We are now ready to state our main result. oIl + O(7 — d2p) 1,11 + O(p)
Theorem1: Consider the switched DAE system (1) with M (1) := if dip <7< (di+da)p
P modes satisfying the following assumptions :
(i) the switching signab is perlodlc of periog and given IIn + O(t—dp_1p—...—d1p) = Ha+O(p)
by (14) withd; € (0,1) Vi=1,...,P; if (di+da+...+dp_1)p <1 <p.




By using (27)-(28) and Lemma 2 (see Appendix B), the

expression (26) becomes

z(t*) = Tn(IIn + Ap + O(p?))F 2o + Tn (114 + Ap
+0(p*)*?0(p) + O(p) (Il + Ap + O(p*))* 11
= (TIn + Ap + O(p?))F~21In20 + T4 (I1H
+0(p))*?0(p) + O(p)(Iln + O(p))* >4

)

= (Il + Ap + O(p?))*2Mnzo + O(p) (29)

Consider now the solution of the average model (18)

Tav (t*) =eart” Iz

:MGU(T)GAa”kam.CCo, (30)
with
My (1) = efter™, (31)
By using (25), the state (30) can be written as
* ) k
Iav(t ) :Mau(T) (Hﬁ + Agop + O(pQ)) Zo
k—
=M, (7') (Hﬁ + Agop + O(pz)) ? Nay (p)IOa
(32)
with
My (7) = Mao(7) (In + M A TIAp + O(p?))
=1In + O(p), (33)
and

Nav(p) = (Hﬁ + Aavp + O(pQ))Hm = Hﬂ + O(p) (34)

Invoking (33) and again Lemma 2, equation (32) can be

written as

Zao (t") = (A + Agop + O(pQ))]ﬁQHmUCO
+ (M + Agop + O(p?)*20(p)
= Tn(In + Aawp + O(p?))**TTnag
+ (IIn + O(p))**0(p)
= (Tln + Agwp + O(p*))* T + O(p)
(35)
Indeed we have

2(t) = Zav (£)]] < [TA[In + Ap + O(p*))" 2
— (I + Aavp + O(p*)* 2|0
+O(p) (36)

Lemma 4 (see Appendix B) and the fact that O(1/p),
(36) becomes
[2(t) — 240 ()] = O(p)- (37)

V. SIMULATION RESULTS

To show the effectiveness of the proposed approach con-
sider the following numerical results.
Examplel: Let

10 0
(El,Al):( 010
00 0

1
(B2, A2) = [ 0

1 -4 4
01 0 0 -2 0
(Eg,Ag):( 00 1],]0 -1 1 ) (40)
00 0 1 1 0

The second subsystem is an ODE, Bp= Sy = Il = [
and AY™ = A,,, instead the matrix pair€l’, S1), (T3, Ss3)

are
1 0 0 100
(Tl,Sl):( o 1 0l,]0 10 )
0 -1 1 00 1
1 0 1 10 0
(Tg,sg):( 100/, 0 10 )
0 1 0 0 0 1
1 0 0 0 -1 0
m=(0 1 0], My=|0 1 0],
0 -1 0 0 0 1
_ 0 -2 0 | 0 2 0
A — 1 -3 0|, AWM =10 -2 0.
1 3 0 0 -1 1

and

0 -1 0
=0 1 0.
0 -1 0

By choosingd; = 0.5, do = 0.3 andds = 0.2 the average

matrix is
0 39/10 0
Agw= |0 —39/10 0 |. (41)
0 39/10 0
and
—4/5 31/10 0
A=1| 4/5 =31/10 0 |. (42)
—4/5 —13/10 0

The solution of the corresponding switched DAEs described
by (38)—(40), and that of the average system (18), (41) are
shown in Fig. 1 with a switching periog = 0.1 s.

By decreasing the switching period the solution of the
switched DAE and that of the average model become close
to each other as shown in Fig. 2, where a switching period
p = 0.02 s is chosen.



@

projectors that can not be moved outside the switched DAEs
solution formula, as in the case of two modes. Dealing with
the averaging theory for this class of switched systems ®pen
many interesting lines of research. For instance it could be
of interest to study the average system to infer stability
property for the switched DAEs. Other directions of future
research could be to investigate if in the case of solutions
with impulses the average model is still valid. Also, the
definition of an average model for switched DAESs with state-

, dependent switching functions is an interesting challenge
. APPENDIX

- : A. Image of commuting matrices

. N Lemmal: Consider P commuting matrices
” My, My, ..., Mp, with M; such that M? = M, for

t=1...(P—1). Then the following holds

(© (d)

Fig. 1. Simulation results of Example (1) with p=0.1 s: (a3tetspace
solutions, (b) time evolution ofr;, (c) time evolution ofzs, (d)time
evolution of zs.

1
u
03| v,

© (d)

Fig. 2. Simulation results of Example (1) with p=0.02 s: (8tes—space
solutions, (b) time evolution ofc1, (c) time evolution ofzz, (d) time
evolution ofzs.

VI. CONCLUSIONS

This paper studied the averaging method for linear
switched differential algebraic equations (DAES). By assu
ing that the consistency projectors commute we define an av-
erage model in the case of the homogeneous linear switched
DAEs with the switching signal that periodically switches
between the multiple modes. The main result (Theorem 1)
says that the error between the solution of the switched
DAE and that of the corresponding average model is of the
order of the switching period. The work reported here is
a generalization of the averaging result presented in [15]
for a switched DAEs with two modes, however it is not
a trivial extension due to the presence of the consistency

“ 211

Proof:
“

Clearly, it holds that
iliMg...Mp giliMg...]\/fp_l
- iliMg...Mp_g c...C ili,

by using that the matri®/; commutes with\/; for
j=1...i—1 we have

lIanMl,lMZMP:HanMZszl
...MpZili...]\/fiMi_gMi_l...Mp
:imMiMl...JV[pgimMiMl...Mp_l -
This shows
imM{Ms...Mp Cim M;Nim M>N...Nim Mp.
Consideringy € im M1 Nim My N...Nim Mp the
following holds:

yeimM NimMsN...Nim Mp

Sdxp eRY,Fzo eR” ... xp e R":

y= Mz Ny= MsxsN...Ny= Mpxp

S dx eR", Fz e R” ... xp e R":
Mixy = Msxo = ... = Mpxp =y

=y = M2z = M Moxo = ... = M M,
oMy = .. = MMy M2 x4
ZMiMy...M;_1Mz; =...= M{M,...
Mp yxp 1y =...=MM,y...Mj jxp_,

Z MiM,...Mpzp
=3JdreR":y=MMs... Mpx
SyeimMiM,...Mp,

where fore we usedV/? = M;, withi =1...(P—
1), and forx M;_1x;-1 = M;x;, with:=2...P.
This concludes the proof.

| ]



B. Lemmas needed to prove the main result

certain order. Then by considering? + 1, p) one obtains

. L . — A 2\\¢+1 4
We start with a preliminary result concerning powers of (¢ +1p)|| = [Tn(In + Ap + O(p7)) ™" Allnp

the slightly disturbed projectdr,.

Lemma2: Let ¢(p) € N such thatpl(p) = O(1) asp —
0. Then

(IIn + O(p))“?) = O(1) (44)

Proof: SincelIl is a projector all finite products of
II~ are trivially bounded and a well known result, see e.g.

— Tn (T + Aawp + O(p?)) T Agy Ip||
=||TIA(IT~ + Ap + O(p?))

(I + Ap+ O(p*)) Allnp

— n(Iln + Agop + O(p?))

(T + Agop + O(p%)) Aau Tp |
=TI~ (I + Ap + O(p*))* ATl p

+ T A(TA + Ap + O(p?))* Allnp?

[21, Thm. 3], ensures that we can find a nofim|| on R™
such that||TI4|| = 1 for the induced matrix norm. Due to
the equivalence of all norms on finite dimensional space we
find a constanty; € R such that

+ N0 (p?) (I + Ap + O(p?))* Allnp
— n(Tn + Agop + O(p?)) AgoITnp
— nAaw(Mn + Aawp + O(p?))  Agy lTnp?
- HmO(pQ)(Hﬂ + Agop + O(pQ))EAauHmpH
I + Ap + O(p?) Allp
+ A A(IA 4 Ap + O(p?)) ATl p?
— (T + Agop + O(p?)) A Tnp
—TnAuy (TIn 4+ Agep + O(p*)) A TTnp?||
+ 062173
<[y, p)|| + TR A(TTA + Ap + O(p?))* All[|p?
+ ITA Ay (TTn + Agup + O(p?)) Ay Tn || p?

Lemma3: Given the matricedl~, A and A,,, and the + agp?
periodp define the function

a1 + 0@ | < @ || 10 + 0) @ |

< a1 (14+0(p)'® < ar(l+ agp)™/”
< e =0(1).

for sufficiently smallp and whereas, a3 € R are chosen
accordingly. [ ]

<&
<y p)|| + cap® + azp? (47)

for some constants, and a3 and where foro we used
Lemma (2). Then from (47) the proof is completed. |

Lemma4: Given the matricedl~, A and A,,, and the
periodp define the function

v(£,p) :=TIn(TIn + Ap + O(p?))* Allp
— (s + Agp + O(p?)) Aaullnp,  (45)

with ¢ a positive integer. The function (45) £©(p?) for any ~
integer?. v 9(¢,p) := Tn[(Tn + Ap + O(p*))"

o 2\\¢
Proof: To prove our statement a recursive approach is (I + Aawp + O(p7)) T (48)

used. For = 1 one has
with ¢ a positive integer. The function (48) i&)(p?) for any
integer/.

Proof: To prove our statement a recursive approach is

1,p)|| =TI~ (IIn + Ap + O(p?)) ATl
(1, p) | =TI~ (T~ + Ap + O(p”)) Allp used. For — 1 one has

— A (I1n + Agep + O(pQ))Aavap”
<R ATl — TIn Ago I [|p

+ | Tn AT, — TR A2 1T |)p* + oap®
=0 ATl — TR A2, A [[p* + a1p®  (46)

lg(L, p)|| =T [(In + Ap + O(p?))
- (Hﬂ + Agup + O(pQ))]Hﬂ”
<A AT, — TTn Ago TTn||p + cup?, (49)

. . for some constanty. Then by using (20) it is verified that
where we used (20). Thef(1, p) is anO(p?) function. g(1,p) is an O(p?) function. ?{[ is ncg)]V\E p(zssible to proceed
It is now possible to proceed with the inductive step. Fowith the inductive step. For the average theorem we will be
the average theorem we will be interest to the case thatinterested to the case thagoes to infinity wherp goes to
goes to infinity whenp goes to zero. Then it is important zero. Then it is important to explicitly indicate the podsib
to explicitly indicate the possible presence ferms of a presence of terms of a certain order. Then by considering



g(¢+ 1,p) one obtains
lg(€+ 1,p)|| = U [(Tn + Ap + O(p*)

for some constants. Then from (50) and by using the fact
that (¢, p) is LO(p?

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

— (IIn + Agup + O(pz))“_l]HﬂH
=||TI~[(TTn + Ap + O(p*))"
(Il + Ap + O(p?))
— (IIn + Agup + O(pQ))g
(T + Agop + O(p?)T4 |
<A (T + Ap + O(p?))*
— (Hn + Awp + O(p?))
+ TR (T + Ap + O(p*
— (Tl + Agup + O(p
+ agp?
= lg(&;p)|| + (6 p) || + aep®,

‘|
)¢ Allp
2))£AavHﬂpH

(50)

) the proof is complete. [ ]
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