
Stability of Piecewise Affine Systems through Discontinuous Piecewise
Quadratic Lyapunov Functions

Raffaele Iervolino†, Stephan Trenn∗, Francesco Vasca]

Abstract— State-dependent switched systems characterized
by piecewise affine (PWA) dynamics in a polyhedral partition
of the state space are considered. Sufficient conditions on
the vectors fields such that the solution crosses the common
boundaries of the polyhedra are expressed in terms of quadratic
inequalities constrained to the polyhedra intersections. A piece-
wise quadratic (PWQ) function, not necessarily continuous, is
proposed as a candidate Lyapunov function (LF). The sign
conditions and the negative jumps at the boundaries are
expressed in terms of linear matrix inequalities (LMIs) via cone-
copositivity. A sufficient condition for the asymptotic stability
of the PWA system is then obtained by finding a PWQ-LF
through the solution of a set LMIs. Numerical results with a
conewise linear system and an opinion dynamics model show
the effectiveness of the proposed approach.

I. INTRODUCTION

The asymptotic stability of continuous-time systems which
are piecewise affine (PWA) over a polyhedral partition of
the state space can be investigated by using Lyapunov
approaches. A common quadratic Lyapunov function does
not always exists and to find a more general Lyapunov
function is a nontrivial issue [12], [10]. In order to get less
conservative conditions a typical approach consists in using
piecewise quadratic (PWQ) Lyapunov functions (LFs) [8]. A
seminal work on the use of PWQ-LFs for PWA systems is [6]
where the S-procedure is employed to determine stability
conditions expressed in terms of linear matrix inequalities
(LMIs). A typical assumption for this technique is the
continuity of the PWQ-LF on the boundaries shared by
different polyhedra [7], [16].

A stability analysis with discontinuous PWQ-LFs for pla-
nar PWA systems with continuous vector fields is proposed
in [1]. The stability conditions proposed in [11] for the
PWQ-LF allows discontinuities but the apriori knowledge of
the sequence of modes and the S-procedure are required.
By using the copositive programming approach [13], in
this paper we translate polyhedra-constrained conditions on
the PWQ-LF into corresponding linear matrix inequalities
(LMIs). The proposed approach can be considered as a gen-
eralization of the stability analysis presented in [4], [5] where
the continuity of the PWQ-LF was required and a more
restrictive class of PWA systems was considered. We adopt
the cone-copositive approach in order to formulate a crossing
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condition of the system trajectory through the polyhedra
boundaries. This condition allows to analyze existence and
uniqueness of solutions for a quite general class of PWA
systems and to express a non-increasing condition for the
candidate PWQ-LF in terms of LMIs.

The paper is organized as follows. In Sec. II some
definitions on polyhedra and cones are recalled and some
preliminary results on the sign analysis of a PWQ function
on a polyhedron is presented. The class of PWA systems with
the relative solution analysis is presented in Sec. III. The
main stability result with the conditions for the existence of
a possibly discontinuous PWQ-LF is presented in Sec. IV.
The numerical examples illustrated in Sec. V confirm the
effectiveness of the approach. Sec. VI concludes the paper.

II. PRELIMINARIES

In this section some preliminary definitions and concepts
on (polyhedral) cones, polyhedra, homogenization procedure
and copositivity are recalled.

A. Cones and homogenization procedure

Definition 1: Given a finite number ρ of points {r`}ρ`=1,
r` ∈ Rn, ρ ∈ N, a conical hull

C = cone {r`}ρ`=1 (1)

is the set of points v ∈ Rn such that v =
∑ρ
`=1 θ`r`, with

θ` ∈ R+, R+ being the set of nonnegative real numbers.
The set C is also called (polyhedral) cone and the points
{r`}ρ`=1 are called rays of the cone. The matrix R ∈ Rn×ρ
whose columns are the points {r`}ρ`=1 in an arbitrary order
is called ray matrix. Any v ∈ C can be written as v = Rθ
where θ ∈ Rρ+.

Definition 2: Given a finite number λ of points {v`}λ`=1,
v` ∈ Rn, λ ∈ N, a convex hull, say conv{v`}λ`=1, is the
subset of points in a conical hull for which

∑λ
`=1 θ` = 1.

Definition 3: Given a finite number λ of vertices {v`}λ`=1

and a finite number ρ of rays {r`}ρ`=1, v`, r` ∈ Rn, λ, ρ ∈ N,
the (convex) set

X = conv{v`}λ`=1 + cone{r`}ρ`=1 (2)

is a polyhedron in Rn. The expression (2) identifies the so-
called V-representation of the polyhedron. The conical hull
CX of X is obtained by interpreting the vertices also as rays,
i.e.

CX = cone{{v`}λ`=1, {r`}
ρ
`=1} (3)

and the corresponding ray matrix is

R =
(
v1 · · · vλ r1 . . . rρ

)
. (4)



In the following we assume that in the polyhedron repre-
sentation (2) all possible redundancies of the set of vertices
and rays have been eliminated.

Definition 4: A partion of X ⊆ Rn is a family of full-
dimensional sets {Xs}Ss=1, S ∈ N, such that X = ∪Ss=1Xs

and int(Xs) ∩ int(Xm) = ∅ for s 6= m, where int(Xs)
denotes the interior of Xs. A polyhedral partition is a par-
tition {Xs}Ss=1 where each Xs is a closed full-dimensional
polyhedral and each intersection of two polyhedra is either
empty or a common face.

Note that the assumption that for a polyhedral partition
the intersection of two adjacent polyhedra is a common face
is not restricitve and can always be achieved with suitable
subdivision of the regions.

In order to utilize copositiveness and LMIs we will use
the homogenization procedure defined below.

Definition 5: Consider a polyhedron X ⊂ Rn with the
representation (2). For each vertex v` ∈ Rn, its vertex-
homogenization v̂` ∈ Rn+1 is defined as v̂` = col(v`, 1),
where col(·) indicates a vector obtained by stacking in a
single column the column vectors in its argument. For each
ray r` ∈ Rn its direction-homogenization r̂` ∈ Rn+1 is de-
fined as r̂` = col(r`, 0). The resulting conic homogenization
of X is then

CX̂ = cone{{v̂`}λ`=1, {r̂`}
ρ
`=1},

with corresponding ray matrix

R̂ =

(
v1 · · · vλ r1 . . . rρ
1 · · · 1 0 · · · 0

)
. (5)

We can now present some definitions and results on
copositivity and cone-copositivity.

Definition 6: A symmetric matrix P ∈ Rn×n is cone-
copositive with respect to a cone C ⊆ Rn if it is positive
semidefinite with respect to that cone, i.e., if x>Px ≥ 0
for any x ∈ C. A cone-copositive matrix will be denoted by
P <C 0. If the equality only holds for x = 0, then P is
strictly cone-copositive and the notation is P �C 0. In the
particular case C = Rn+, a (strictly) cone-copositive matrix
is called (strictly) copositive.

The notation P < 0, i.e., without any superscript on
the inequality, indicates that P is positive semidefinite, i.e.,
x>Px ≥ 0 for any x ∈ Rn.

The cone-copositivity evaluation of a known symmetric
matrix can always be transformed into an equivalent coposi-
tive problem and then to an LMI, as stated by the following
result.

Lemma 7: Let P ∈ Rn×n be a symmetric matrix, C ⊆
Rn be a polyhedral cone with ray matrix R ∈ Rn×ρ and
N be a symmetric (entrywise) positive matrix. Consider the
following constrained inequalities

P �C 0, (6a)

R>PR �Rρ+ 0, (6b)

R>PR−N < 0. (6c)

Then the following conditions hold
i) (6a)⇐⇒ (6b)

ii) (6c) =⇒ (6a).
Proof: i) The equivalence is directly obtained by using

Def. 1.
ii) From (6c) it is R>PR−N = Q with Q < 0 and hence

θ>R>PRθ = θ>(Q+N)θ, (7)

since θ>Nθ is strictly positive for θ ∈ Rρ+ −{0}, it follows
that also (7) is strictly positive for θ ∈ Rρ+−{0}. Then (6b)
holds and from i) the proof is complete.

Remark 8: By following similar steps it can be easily
shown that for any symmetric (entrywise) nonnegative matrix
N , the LMI R>PR−N < 0 implies R>PR <Rρ+ 0 which
is equivalent by definition to P <C 0.

B. Sign of quadratic functions on polyhedra

Let us consider a polyhedron X ⊂ Rn represented as (2)
and a quadratic function

V (x) = x>Px+ 2ν>x+ ω, x ∈ X, (8)

where P ∈ Rn×n is a symmetric matrix, ν ∈ Rn is a vector,
ω is a real scalar with ω = 0 if 0 ∈ X . Define the symmetric
matrix P̂ ∈ R(n+1)×(n+1) as

P̂ =

(
P ν
ν> ω

)
. (9)

For the sign analysis of (8) we need the following prelim-
inary result.

Lemma 9: Consider (8), (9) and let CX̂ ⊂ Rn+1 be the
conic homogenization of the polyhedron X ⊂ Rn. Consider
the following constrained inequalities

V (x) ≥ 0, x ∈ X, (10a)

P̂ <CX̂ 0, (10b)

R̂>P̂ R̂−N < 0, (10c)

with ω = 0 if 0 ∈ X and N any symmetric (entrywise)
nonnegative matrix. Then the following conditions hold

i) (10a)⇐⇒ (10b)
ii) (10c) =⇒ (10a).

Proof: The proof of i) follows as a particular case
of Proposition 2 in [14]. The proof of implication ii) is
analogously to the proof of Lemma 7 ii).

Remark 10: If 0 /∈ X , the equivalence i) in Lemma 9
is valid also for strict inequalities; the implication ii) in
Lemma 9 is valid for strict inequalities if N is replaced
by a matrix N with (strictly) positive entries, i.e. for the
statements

V (x) > 0, x ∈ X, 0 /∈ X (11a)

P̂ �CX̂ 0 (11b)

R̂>P̂ R̂−N < 0, (11c)

we have
i) (11a)⇐⇒ (11b)
ii) (11c) =⇒ (11a)

To obtain a strict inequality also for the case that 0 ∈ X
an additional condition is required:



Lemma 11: With the notation of Lemma 9 assume 0 ∈
X and ω = 0, i.e. V (x) = x>Px + 2ν>x. Consider the
statements

V (x) > 0, x ∈ X \ {0}, 0 ∈ X (12a)

R>PR−N < 0 ∧
2ν>Rei ≥ 0, i = 1, . . . , λ+ ρ

}
(12b)

where ei ∈ Rλ+ρ denotes the i-th unit vector and N is
a matrix with (strictly) positive entries. Then the following
condition holds

(12b) =⇒ (12a)
Proof: The proof is reported in [3].

Remark 12: The homogenization procedure adopted for
i) in Remark 10, when applied to a polyhedron X which
contains the origin, leads to a cone CX̂ which contains the ray
r0 = {x̃ = col(x, xn+1), x ∈ X,xn+1 ∈ R+ ∧ x = 0}. The
quadratic form in the augmented space, obtained from the
quadratic function in Lemma 11 by using (9) with ω = 0, is
identically zero along the ray r0. As a result, the strict cone-
copositive condition has to be restricted to the (not closed)
cone CX̂ − r0, which cannot be treated by our approach and
there is no analogue of the equivalence as in Remark 10 i)
for polyhedra X with 0 ∈ X .

III. PWA SYSTEM AND SOLUTION CONCEPT

A. General setup and definitions

Let us consider a polyhedral partition {Xs}Ss=1 of Rn and
denote by Σ0 the subset of indices s such that 0 ∈ Xs and
Σ1 its complement, i.e., Σ0 ∪ Σ1 = {1, . . . , S} =: Σ. We
consider the PWA system

ẋ = Asx+ bs, x ∈ Xs, s = 1, . . . , S (13)

where As ∈ Rn×n, bs ∈ Rn with bs = 0 for all s ∈ Σ0.
Each Xs is assumed to be a closed set, i.e. neighbouring
polyhedra intersect nontrivially and there is some ambiguity
in (13) on these intersections. This ambiguity can be resolved
by considering solutions in the sense of Caratheodory, i.e.
absolutely continuous (in particular, differentiable almost
everywhere) functions x which satisfy (13) for almost all
times. Note that we are not considering sliding modes or
Filippov solutions.

Definition 13: A solution x is called global iff it is defined
on the whole time interval [0,∞). A solution x : [0, ω) →
Rn, ω ∈ (0,∞], of (13) is called maximal iff either ω =∞
(i.e. x is global) or there is no solution x : [0, ω) with ω > ω
which coincided with x on [0, ω). A non-global solution x :
[0, ω), ω ∈ (0,∞), is called Zeno-solution iff it is maximal
and the limit of ẋ(t) as t→ ω does not exist.

Note that in general there may be non-global solutions
which are not Zeno-solutions.

B. The crossing condition

Recall that we assumed that the intersection

Xij := Xi ∩Xj

of two polyhedral sets Xi, Xj of the polyhedral partition
{Xs}Ss=1 is either empty or a common face. In particular,
any nonempty Xij is again a polyhedron and has a V-
representation (2) which simply consists of the common
vertices and rays of the V-representations of Xi and Xj

(under the nonrestrictive assumption that the rays in the V-
representations of Xi and Xj are normalized). Let

Σ∩ := { (i, j) | Xij 6= ∅ }

In the following we will introduce a crossing condition for
which we focus on n − 1-dimensional intersections, i.e. on
the set

Σn−1
∩ := { (i, j) ∈ Σ∩ | dimXij = n− 1 } .

Note that (i, j) ∈ Σ∩ if, and only if, (j, i) ∈ Σ∩. Each
intersection Xij with (i, j) ∈ Σn−1

∩ is contained in a unique
hyperplane Hij = Hji which is given by

Hij =
{
x ∈ Rn

∣∣ h>ijx+ gij = 0
}

for some normal vector hij ∈ Rn and offset gij ∈ R. For any
normal vector hij of Hij also λhij for any λ ∈ R \ {0} is a
normal vector of Hij . Hence it is no restriction of generality
to assume that hij is chosen such that it points from Xi to
Xj , i.e. we can assume that

h>ijx+ gij > 0, x ∈ Xj −Xij , (14a)

h>ijx+ gij < 0, x ∈ Xi −Xij . (14b)

Note that with this convention the normal vectors hij and
hji will have opposite directions.

We can now formulate the following crossing condition
for any (i, j) ∈ Σn−1

∩ (cf. [2, Sec. 4.3] which presents a
slightly weaker assumption):

(x>A>i + b>i )hij · h>ij (Ajx+ bj) > 0, ∀x ∈ Xij . (15)

Since Xij is connected, (15) implies that each factor
(x>A>i + b>i )hij and h>ij (Ajx+ bj) in (15) has constant
sign. It is easily seen that the crossing condition for (i, j) ∈
Σn−1
∩ is satisfied if, and only if, the crossing condition

for (j, i) ∈ Σn−1
∩ is satisfied, the only difference is that

the positive product in one case results from two positive
factors and in the other case from two negative factors. This
redundancy can be eliminated by introducing the direction
aware index set

Σcross
∩ =

{
(i, j)∈ Σn−1

∩

∣∣∣∣∣ (15) holds ∧ ∃x ∈ Xij :

h>ij(Ajx+ bj) > 0

}
. (16)

While the index set Σ∩ is independent of the actual PWA
dynamics, the index set Σcross

∩ depends on the specific system
and maybe empty if no intersection Xij satisfies (15). If
(i, j) ∈ Σcross

∩ than any solution of (13) which crosses Xij

does this from Xi to Xj .
In practise it may be difficult to verify the crossing

condition (15) because formally it has to be tested for all
x ∈ Xij . However, the following lemma shows that (15) can
be verified by finding a solution of an LMI.



Lemma 14: Consider the PWA system (13) and define for
every pair (i, j) ∈ Σn−1

∩

Qij = A>i hijh
>
ijAj (17a)

µij =
1

2
(A>j hijh

>
ijbi +A>i hijh

>
ijbj) (17b)

ζij = b>i hijh
>
ijbj , (17c)

and

Q̂ij =

(
Qij µij
µ>ij ζij

)
. (18)

Furthermore, let Rij ∈ Rn×(λij+ρij) be the ray matrix of the
cone CXij and let R̂ij be the ray matrix of the cone CX̂ij .
Assume that for all (i, j) ∈ Σn−1

∩ with 0 ∈ Xij the following
inequalities hold:

2µ>ijRije` ≥ 0, ` = 1, . . . , λij + ρij .

Then the crossing condition (15) holds if the following LMIs
hold for all (i, j) ∈ Σn−1

∩

R>ijQijRij −Nij < 0, 0 ∈ Xij (19a)

R̂>ijQ̂ijR̂ij −Nij < 0, 0 /∈ Xij , (19b)

for some symmetric matrix Nij with (strictly) positive en-
tries.

Proof: With simple algebraic manipulations and by
using (17), the inequality (15) can be rewritten as

x>Qijx+ 2µ>ijx+ ζij > 0, x ∈ Xij . (20)

Then by applying Lemma 11 [Remark 10], one obtains
that (19a) [resp., (19b)] implies (20) and hence (15).

C. Existence and uniqueness of solutions of (13)

As far as we are aware, there is no general characterization
of existence and uniqueness of global solutions of the PWA
system (13) and in our main stability result we will just
assume that existence of global solutions is guaranteed
without giving explicit conditions on (13). However, in the
following we will show that the above crossing condition
ensures that for almost all initial values the solutions are
unique and any maximal solution is either global or Zeno.

Lemma 15: Consider the PWA system (13) which satisfies
the crossing condition (15) for all (i, j) ∈ Σn−1

∩ . Then for
almost all initial conditions x(0) = x0 ∈ Rn there exist a
unique maximal solution x : [0, ω) → Rn which is either
global or Zeno.

Proof: Step 1: Existence and uniqueness of local
solution for almost all initial values.
If x0 ∈ int(Xs) for some s ∈ Σ then x is a local solution of
the PWA system (13) if, and only if, it is a (local) solution of
ẋ = Asx + bs, x(0) = x0. Hence existence and uniqueness
of solutions is shown in that case. The set Rn\

⋃S
s=1 int(Xs)

has (Lebesgue) measure zero, hence almost all initial values
are covered by the above argument.
Step 2: Finite escape time cannot occur.
Since only finite partitions are considered the nonlinear
differential equation is affinely bounded and hence finite

escape is not possible.
Step 3: Almost all non-global solutions are Zeno-solutions.
Consider a non-global maximal solution x : [0, ω)→ Rn. By
Step 2 we know that x remains bounded, hence from (13)
and finiteness of the partition it also follows that ẋ remains
bounded on [0, ω). Hence xω := limt→ω x(t) is well defined.
By Step 1, the limit xω must be on the boundary of some Xs.
If xω is contained in the intersection of exactly two regions
Xi and Xj with (i, j) ∈ Σn−1

∩ , then x can be extended
by a local solution of ẋ = Ajx + bj because the crossing
condition ensures that Ajxω+bj points into Xj and xω has a
positive distance from any other boundary of Xj (otherwise
xω would be in the intersection of at least three regions).
Hence the solution x can be continued further, contradicting
maximality of x. As a consequence, if x is maximal but not
global, then xω must be contained in the intersection of at
least three regions. These intersections have dimension of at
most n − 2. Assume now x is not a Zeno-solution, which
implies that ẋω := limt→ω ẋ(t) is well defined. In particular,
there is at least one index s ∈ Σ for which ẋω = Asxω + bs
and −(Asxω + bs) points into Xs. Consequently, for each
region Xs there is at most one trajectory ending in xω and
the set of initial values which end in xω is therefore one-
dimensional. Altogether the union of all initial values ending
up in the at most (n − 2)-dimensional intersections of at
least three polyhedra is at most (n−1)-dimensional and has
therefore measure zero.

Remark 16: Unfortunately, the crossing condition alone
does not exclude Zeno-solutions for a large set of initial
values. As an example consider the following PWA system
on R2 (see also Figure 1):

ẋ =


(−1

1

)
, x1 ≥ 0, x2 ≥ 0,(−1

−1

)
, x1 ≤ 0, x2 ≥ 0,(

1
−1

)
, x1 ≤ 0, x2 ≤ 0,(

1/2
1

)
, x1 ≤ 0, x2 ≤ 0.

x1

x2

Fig. 1: Example which satisfies the crossing condition, but
still exhibits Zeno-behavior.



The trajectories of this example move around the origin
with constant speed and since the length halves after each
round, the origin is reached in finite time. This specific
example is already excluded by the assumption that bs = 0
for all s ∈ Σ0, however the same Zeno behavior occurs when
the example is shifted away from the origin.

IV. ASYMPTOTIC STABILITY OF PWA SYSTEMS

Let us consider the quadratic functions

Vs(x) = x>Psx+ ν>s x+ ωs, x ∈ Xs (21)

with s = 1, . . . , S, Ps ∈ Rn×n symmetric matrix, νs ∈
Rn, ωs ∈ R with ωs = 0 if s ∈ Σ0. Define the (possibly
discontinuous) candidate Lyapunov function V : Rn → R as

V (x) = Vs(x), x ∈ int(Xs) (22)

with s = 1, . . . , S and arbitrary elsewhere.
Lemma 11 can be applied to the different polyhedra of

the polyhedral partition of Rn in order to get a set of
LMIs which provides a sufficient condition for the positive
sign of each (21) and negative sign of each corresponding
time derivative along the system solution. Then we exploit
Lemma 9 for providing a sufficient condition on the nega-
tive sign of the possible jumps of the candidate Lyapunov
function when the solution crosses the boundaries shared by
different polyhedra.

Theorem 17: Consider the system (13) with the polyhe-
dral partition {Xs}Ss=1 where each Xs is expressed according
to (2) with corresponding matrices {Rs}s∈Σ0

and {R̂s}s∈Σ1

as in (4) and (5), respectively. Assume that all maximal
solutions are global, furthermore let Σcross

∩ ⊆ Σ∩ be given
by (16). For s ∈ Σ0 consider the set of LMIs

R>s PsRs −Ns < 0, (23a)

−R>s (A>s Ps + PsAs)Rs −Ms < 0, (23b)

and, for s ∈ Σ1,

R̂>s P̂sR̂s −Ns < 0, (24a)

−R̂>s (Â>s P̂s + P̂sÂs)R̂s −Ms < 0, (24b)

where

Âs =

(
As bs
0 0

)
(25)

and P̂s ∈ R(n+1)×(n+1) are symmetric matrices in the
form (9); Ns, Ms are symmetric (entrywise) positive ma-
trices of appropriate dimensions. Furthermore, for (i, j) ∈
Σcross
∩ consider the decreasing-jump-LMI

−R̂>ijP̂ijR̂ij −N ij < 0, (26a)

and, for (i, j) ∈ Σ∩ \ (Σcross
∩ ∪ { (i, j) | (j, i) ∈ Σcross

∩ }),
the continuity equality constraint

R̂>ijP̂ijR̂ij = 0, (26b)

where R̂ij is the ray matrix corresponding to the cone CX̂ij ,
N ij is a symmetric matrix with nonnegative entries and

P̂ij :=

(
Pj − Pi νj − νi

(νj − νi)> ωj − ωi

)
.

Assume that the LMIs (23), (24), (26), and, for s ∈ Σ0, the
inequalities

2ν>s Rsei ≥ 0,

−2ν>s AsRsei ≥ 0,

}
i = 1, . . . , λs + ρs, (27)

have a solution {Ps, νs, ωs, Ns,Ms}Ss=1 with ωs = 0 for
s ∈ Σ0. Then all solutions of the PWA system (13) converge
asymptotically to zero.

The proof of Theorem 17 is based on the following Lemma
highlighting specific properties of the functions Vs.

Lemma 18: Let Vs be given by (21), let

V̇s(x) := x>(A>s Ps + PsAs)x+ (2b>s Ps + ν>s As)x+ ν>s bs

and assume that (23), (24), (26) and (27) hold. Then Vs is
positive and V̇s is negative definite in the following sense:

Vs(x) > 0 ∀x ∈ Xs \ {0}, (28a)

V̇s(x) < 0 ∀x ∈ Xs \ {0}. (28b)

Furthermore, each Vs is radially unbounded in the following
sense: for all v ∈ Vs(Xs) ⊆ R+ the preimage

V −1
s ([0, v]) := { x ∈ Xs | Vs(x) ≤ v } is compact (29)

and for all ε > 0 exists v > 0 such that

V −1
s ([0, v]) ⊆ { x ∈ Xs | ‖x‖ ≤ ε } . (30)

Note that for s ∈ Σ1 and for sufficiently small v > 0 the set
V −1
s ([0, v]) will be empty.

Proof: From Remark 10 and Lemma 11 together with
(24a), (23a) and (27) we conclude that Vs is positive definite
and the same Remark and Lemma together with (24a),
(23a) and (27) ensure that V̇s(x) is negative definite. Radial
unboundedness (29) follows from the quadratic nature of
Vs and (30) is a consequence of continuity and positive
definiteness of Vs.

Proof of Theorem 17. Choose the PWQ function V as
in (8) as a candidate Lyapunov function; in fact, V can be
defined also on X \

⋃
s intXs =

⋃
(i,j)∈Σ∩

Xij as follows:

V (x)=

{
Vj(x), x ∈ Xij with (i, j) ∈ Σcross

∩ ,

Vi(x) = Vj(x), x∈Xij with (i, j), (j, i) /∈Σcross
∩ ,

where the equality Vi(x) = Vj(x) in the second case is a
consequence from condition (26b). Note furthermore, that
due to condition (26a) we have for all x ∈ Xij with (i, j) ∈
Σcross
∩ :

V (x) = Vj(x) ≤ Vi(x). (31)

Step 1: We show V is decreasing along solutions.
Let x : [0,∞) → Rn be any (global) solution of the PWA
system (13) and let v(t) := V (x(t)). By definition x is



differentiable almost everywhere, in particular for almost all
t ∈ [0,∞) there exists s ∈ Σ, such that

ẋ(t) = Asx(t) + bs and x(t) ∈ Xs

and invoking (28b) we have
d
dtv(t) = d

dtV (x(t)) = V̇s(x(t)) < 0. (32)

It remains to show that v does not jump upwards at those
time points where v is not continuous. Therefore let t∗ ∈
[0,∞) be some point where v is discontinuous. Since x is
continuous it follows that x(t∗) ∈ Xij for some (i, j) ∈ Σ∩.
If (i, j) ∈ Σcross

∩ [or (j, i) ∈ Σcross
∩ ] then the solution crosses

Xij from region Xi towards region Xj [or vice versa] and
(31) ensures that v(t−∗ ) = Vi(x(t∗)) ≥ Vj(x(t∗) = v(t+∗ )
[or v(t−∗ ) = Vj(x(t∗)) ≥ Vi(x(t∗) = v(t+∗ )]. For all other
cases, V is continuous on Xij by (26b) which contradicts
our assumption that v is discontinuous at t∗.
Step 2: We show that all solutions converge to zero.
Let v := limt→∞ v(t), which is well-defined because v is
monotonically decreasing. Seeking a contradiction assume
v > 0 then x evolves within the set

K :=

S⋃
s=1

V −1
s ([v, v(0)])

which, due to positive definiteness of all Vs does not contain
the origin. Furthermore, K is compact because of (29) and
continuity of Vs. Hence, for almost all t ≥ 0

d
dtv(t) ≤ min

s∈Σ
min

x∈K∩Xs
V̇s(x) =: δ < 0

which implies that

v(t) ≤ v(0)− δt,

contradicting v(t) ≥ v for all t ≥ 0 and we have shown that
V (x(t))→ 0 as t→∞.
Step 3: x(t) converges to zero. Seeking again a contradiction
assume x(t) 6→ 0. Then there exists ε > 0 and an increasing
unbounded sequence {tk}k∈N with ‖x(tk)‖ ≥ ε. Since
V (x(tk))→ 0 as k →∞, this contradicts (30).

Remark 19: The current formulation of Theorem 17 re-
quires continuity of the PWQ-LF on all intersections Xij

where the crossing condition (17) is not satisfied. This
assumption can significantly be relaxed, for example inter-
sections Xij where solutions can never pass through (for
example when all vector fields point away from Xij) are
irrelevant and the corresponding constraint (26b) can be
omitted.

Remark 20: Local stability in a bounded (polyhedral)
region which is an invariant set containing the origin, can be
proved with straightforward reformulations of Theorem 17.

V. SIMULATION RESULTS

Consider the switched second order system ẋ = A(x)x
with A(x) = [1,−5; 0.2, 1] for x being in the first and
third quadrants of the state space, and A(x) = [1,−0.2; 5, 1]
when x is in the second and forth quadrants. The set of
LMIs (23) with the decreasing jump LMIs (26) was solved

by considering a uniform partition into 108 cones. It easy to
verify that the crossing conditions (15) are satisfied for all
the common boundaries.
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Fig. 2: State space trajectory (blue line) for the switched
second order system and a Lyapunov function level curve
(black line).

Figure 2 shows the state space trajectory and a level curve
of the Lyapunov function. In Fig. 3 it is reported the discon-
tinuous (in some time instants) Lyapunov function computed
along the trajectory together with the time evolutions of the
state variables.

As a second example let us consider the opinion dynamics
model in [15] which can be represented in the form (13) with
the partition reported in Fig. 4.
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Fig. 3: Time evolutions of the state variables (blue and
red lines) and Lyapunov function (black line) which present
discontinuities at some time instants.
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Fig. 4: State space for the opinion dynamics model: a state
trajectory (black line) and some level curves of the PWQ-LF.
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Fig. 5: Time evolutions of the state variables and discontin-
uous PWQ-LF (dashed line).

The system matrices are

A1 =

(
−3 0
0 −3

)
, A2 = A3 =

(
−3 0
−1 −2

)
,

A4 = A5 =

(
−2 −1
−1 −2

)
, A6 =

(
−2 0
0 −3

)
,

A7 =

(
−2 0
1 −3

)
, A8 =

(
−3 1
0 −2

)
,

A9 = A10 =

(
−1 0
1 −3

)
, A11 = A12 =

(
−3 1
0 −1

)
,

and bs = 0 for all s ∈ {1, . . . , 12}. Depending on the initial
conditions, the convergence to an equilibrium or a clustering
with different steady state values can occur [9].

The local asymptotic stability of the origin of (13) can
be analyzed by using the proposed PWQ-LF approach. By
applying Remark 20, we found a PWQ-LF for the PWA
dynamics in the polyhedral region shown in Fig. 4 which
is contained in the feasibility domain. In the same region,
which is an invariant set, the crossing conditions are satisfied

and hence the origin is asymptotically stable for any initial
condition belonging to that region. Fig. 5 shows the time
evolutions of state variables and PWQ-LF. It is evident the
discontinuity of the PWQ-LF when the trajectory crosses the
polyhedra boundaries.

VI. CONCLUSIONS

Piecewise quadratic Lyapunov functions (PWQ-LFs) have
been used in the literature for the analysis of the asymptotic
stability for piecewise affine (PWA) systems. In this paper,
by exploiting the cone-copositivity approach, the problem
of finding a PWQ-LF has been formulated in terms of a
set of LMIs. The resulting PWQ-LF is not required to be
continuous and non-increasing conditions at the polyhedra
boundaries are included in the problem in terms of further
LMIs. Simulation results have shown the effectiveness of the
proposed approach.
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