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Abstract— Duality between controllability/reachability and
determinability/observability of switched systems with jumps
is proven. The duality result is based on the recent charac-
terization of controllability for switched differential-algebraic
equations (DAEs) which share many properties with switched
ordinary differential equations (ODEs) with jumps. Here we
view the switching signal as given and fixed, which makes the
overall switched system time-varying, in particular controlla-
bility and reachability do not coincide anymore.

I. INTRODUCTION

We study duality of linear switched ODEs with jumps of
the form

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t /∈ {t1, . . . , tm} ,
x(t+) = Gσ(t+)x(t−), t ∈ {t1, . . . , tm} ,
y(t) = Cσ(t)x(t)

(1)

for a given switching signal σ : R→ {0, 1, . . . ,m}, m ∈ N.
Duality is a classical result of system theory. It was first

introduced for linear systems by Kalman [1] and later gener-
alized to other system classes, for example switched systems
(with switching signal as an input) [9] and non-switched
impulsive systems [6]. Duality of hybrid systems (including
jumps) was also studied in [7] but the approach was restricted
to periodic switching and no distinction between reachability
and controllability was made. To our best knowledge, our
forthcoming duality result for linear switched systems with
jumps and arbitrarily given (but fixed) switching signal is
new.

II. SWITCHED ODES WITH JUMPS

A switched ODE with jumps (1) is given by the matrices
Ai ∈ Rn×n, Bi ∈ Rn×q, Ci ∈ Rp×n and Gi ∈ Rn×n, i ∈
{0, 1, . . . ,m} for some n, p, q,m ∈ N and a switching signal
σ as defined below. We call x the state, u the input and y the
output of the system. The notion state is also used for x(t),
t ∈ R. Inputs, states and outputs of this system are assumed
to be piecewise-smooth functions

C∞pw :=

 α =
∑
i∈Z

(αi)[ti,ti+1)

∣∣∣∣∣∣∣
{ti|i ∈ Z} loc. finite
ti < ti+1, αi ∈ C∞,
i ∈ Z

 .

Another name for this system class is impulsive system
(see e.g. [12]). Note that the duality result for impulsive
systems given by [6] does not allow for a switching in the
system dynamics or different jump maps.
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We will consider switching signals of the following class.
Definition 1 (Switching Signal): The switching signal σ :

R→ {0, 1, . . . ,m}, m ∈ N is given by

σ(t) :=


0, t < t1,

i, t ∈ [ti, ti+1), i = 1, . . . ,m− 1,

m, t ≥ tm,
(2)

where 0 < t1 < . . . < tm are the switching times and
τi := ti+1− ti denotes the duration of mode i. Furthermore,
to simplify the notation, let t0 := 0 and tm+1 := T for
some T > tm. Note that t0 and tm+1 are not switching
times. Finally, the single switch case m = 1 will play a
crucial role in our analysis and we will denote the single
switch switching signal by σ1.

Remark 1 (Generality of switching signals): Note that
assuming that the switching signal has the form (2) is
not a practical restriction of generality. First of all, it
is reasonable to assume that the switching times do not
accumulate towards minus infinity, hence there is a first
switching time t1 and we can chose the time axis such that
t1 > 0. Additionally, we assume that there are no finite
accumulation points of the switching times. i.e. on every
finite interval there are only finitely many switching times
and by relabeling the matrices accordingly we arrive at (2).
Finally, because of causality the solution behavior of (1) on
some finite interval (0, T ) is independent of the switching
signal on (T,∞), hence assuming that the switching signal
is constant on [T,∞) is no restriction for our setup where
we are only interested in duality with respect to a given
finite interval (and not on asymptotic behaviors). As a side
effect of the latter assumption, the time reversal of σ (with
corresponding relabeling) is a again a switching signal
according to our definition.

III. SYSTEM THEORETIC PROPERTIES

The system theoretic properties controllability, reachabil-
ity, observability and determinability are defined based on
the behavior

Bσ :=
{

(u, x, y) ∈
(
C∞pw

)q×n×p ∣∣∣ (u, x, y) satisfies (1)
}
.

Controllability and reachability are analzyed analogous to the
work [4]. The results on observability and determinability are
based on [8], [10].

A. Definitions

Definition 2: The switched ODE with jumps (1) with
switching signal (2) is called



• controllable on [0, T ] iff the corresponding behavior Bσ
is controllable on [0, T ] in the behavioral sense, i.e.
∀ω, ω̂ ∈ Bσ ∃ω̃ ∈ Bσ:

ω(−∞,0) = ω̃(−∞,0), ω̂(T,∞) = ω̃(T,∞),

• reachable on [0, T ] iff ∀ω ∈ Bσ, ω̂ ∈ Bσ(T+) ∃ω̃ ∈ Bσ:

ω(−∞,0) = ω̃(−∞,0) and ω̂(T,∞) = ω̃(T,∞),

• observable on [0, T ] iff ∀ (u, x, y) , (û, x̂, ŷ) ∈ Bσ:

u = û ∧ y[0,T ] = ŷ[0,T ] ⇒ x = x̂,

• determinable on [0, T ] iff ∀ (u, x, y) , (û, x̂, ŷ) ∈ Bσ:

u = û ∧ y[0,T ] = ŷ[0,T ] ⇒ x(T,∞) = x̂(T,∞).
Because of linearity it is easily seen (c.f. [11, Prop. 7]

and [4, Rem. 3.2]) that a switched ODE with jumps is
controllable on [0, T ] iff for any initial value x0 ∈ Rn
there exists a solution (u, x, y) ∈ Bσ with x(0−) = x0

and x(T+) = 0. A system is reachable on [0, T ] iff for
any value xT ∈ Rn there exists a solution (u, x, y) ∈ Bσ
with x(0−) = 0 and x(T+) = xT . It is observable on [0, T ]
iff (0, x, y) ∈ Bσ with y[0,T ] ≡ 0 implies x(0−) = 0 and
determinable on [0, T ] iff the same implies x(T+) = 0.

The following spaces do not directly fit these criteria, but
turn out to give a more intuitive approach to the duality
results.

Definition 3: For 0 ≤ s < t we define
• the controllable space

C(s,t)
σ :=

{
xs ∈ Rn

∣∣∣∣∣ ∃(u, x, y) ∈ Bσ :

x(s+) = xs, x(t−) = 0

}
,

• the reachable space

R(s,t)
σ :=

{
xt ∈ Rn

∣∣∣∣∣ ∃(u, x, y) ∈ Bσ :

x(s+) = 0, x(t−) = xt

}
,

• the unobservable space

UO(s,t)
σ :=

{
xs ∈ Rn

∣∣∣∣∣ ∃(0, x, y) ∈ Bσ :

x(s+) = xs, y(s,t) = 0

}
,

• the undeterminable space

UD(s,t)
σ :=

{
xt ∈ Rn

∣∣∣∣∣ ∃(0, x, y) ∈ Bσ :

x(t+) = xt, y(s,t) = 0

}
.

In the following we will assume that the interval [0, T ]
considered for the system theoretic properties corresponds to
the switching signal. As all switches lie in (0, T ) the spaces
defined above fit to the system theoretic properties.

Lemma 1: A switched ODE with jumps and switching
signal (2) is
• controllable on [0, T ] iff C(0,T )

σ = Rn,
• reachable on [0, T ] iff R(0,T )

σ = Rn,
• observable on [0, T ] iff UO(0,T )

σ = {0},
• determinable on [0, T ] iff UD(0,T )

σ = {0}.
Proof: The system theoretic properties do not change

when assuming smooth inputs. As 0 and T are not switching
times, u, x and y are smooth at these points.

In the following it will be helpful to consider restrictions
of switching signals. For a switching signal σ and s ≥ 0 we
define

σ≥s(t) =

{
σ(t), t ≥ s,
σ(s+), t < s.

σ≥s is called restriction to (s,∞) as it is equal to σ on
(s,∞) and has jumps only in this interval.

B. Controllability

This section is based on [4] where the given controllability
notion was first discussed for switched DAEs. The ideas for
switched ODEs with jumps are quite similar.

Lemma 2 (Single switch, [4, Thm. 3.6]): Consider the
switched ODE with jumps (1) with the single switch
switching signal σ1. Then the controllable space is given by

C(0,T )
σ1

= C0 + e−A0τ0G−1
1 C1,

where C0 and C1 are the usual controllability spaces of the
unswitched ODEs ẋ = A0x+B0u and ẋ = A1x+B1u.

The single switch result is used to derive a formula for
the controllable space for general switching signals. Starting
from the last switch a recursion for the controllable space
is given. To derive this recursion we work with switching
signals whose switches are restricted to intervals (ti, T )
as otherwise we would have to care about feasibility. The
switching signal σ≥ti guarantees that any xi ∈ Rn is a
feasible state at time t+i , i.e. there exists (u, x, y) ∈ Bσ≥ti

with x(t+i ) = xi.
Theorem 1 (General switching signal, cf. [4, Thm. 3.10]):

Consider the switched ODE with jumps (1) with switching
signal (2). Define

Pmm := Cm,
Pmi := Ci + e−AiτiG−1

i+1P
m
i+1

(3)

for i = m−1, . . . , 0, where Ci denote the usual controllability
space of the unswitched ODE ẋ = Aix+Biu. Then it holds

C(ti,T )
σ≥ti

= Pmi for i = 0, . . . ,m

and the system is controllable on [0, T ] iff Rn = Pm0 .
Proof: The first statement says that Pmi is the set of all

states at time t+i which can be controlled to zero on (ti, T )
when neglecting the switches on (0, ti], i.e. for a switching
signal constant on (−∞, ti]. The single switch result can be
used to obtain

C(ti−1,T )
σ≥ti−1

= Ci−1 + e−Ai−1τi−1G−1
i C

(ti,T )
σ≥ti

.

The statement is then shown by induction. For i = m we
have the unswitched case. Using the above equation it holds
for the induction step i→ i− 1:

C(ti−1,T )
σ≥ti−1

= Ci−1 + e−Ai−1τi−1G−1
i C

(ti,T )
σ≥ti

Ind.
= Ci−1 + e−Ai−1τi−1G−1

i P
m
i = Pmi−1.

The last statement follows by Lemma 1.



C. Reachability

Lemma 3 (Single switch): Consider the switched ODE
with jumps (1) with switching signal σ1. The reachable space
is given by

R(0,T )
σ1

= C1 + eA1τ1G1C0.
Proof: “⊆”: Let xT ∈ R(0,T )

σ1 , i.e. there exists
(u, x, y) ∈ Bσ1

with x(0+) = 0 and x(T−) = xT . Define
ū := u(−∞,t1), û = u[t1,∞) and corresponding solutions
x̄, x̂ with zero initial condition. Clearly, x = x̄+ x̂. It holds
x̄(t−1 ) ∈ C0 and hence x̄(T−) ∈ eA1τ1G1C0. For x̂ it holds
x̂(t−1 ) = 0 and hence x̂(T−) ∈ C1. This gives

x(T−) = x̄(T−) + x̂(T−) ∈ eA1τ1G1C0 + C1.

“⊇”: Let xT ∈ C1 + eA1τ1G1C0. Hence there exists x1 ∈
C0 such that xT − eA1τ1G1x1 ∈ C1. Define ū on [0, t1) such
that (ū, x̄, ȳ) ∈ Bσ1 with zero initial condition and x̄(t−1 ) =
x1 and define û on [t1, T ) such that (û, x̂, ŷ) ∈ Bσ1

with
zero initial condition and x̂(T−) = xT − eA1τ1G1x1. Note
that ū is zero outside (0, t1) and û is zero outside (t1, T ). It
holds for (u, x, y) := (ū+ û, x̄+ x̂, ȳ + ŷ) ∈ Bσ1

: x(0+) =
x̄(0+) + x̂(0+) = 0 and

x(T−) = x̄(T−) + x̂(T−)

= eA1τ1G1x1 + xT − eA1τ1G1x1 = xT .

Hence C1 + eA1τ1G1C0 ⊆ R(0,T )
σ1 .

The single switch result is now used to derive a recur-
sion giving the reachable space on (0, tk+1) based on the
reachable space on (0, tk). As we are going forward in
time, feasibility is not an issue and thus a restriction of the
switching signal - as for controllability - is not necessary.

Theorem 2 (General switching signal): Consider the
switched ODE with jumps (1) with switching signal (2).
Define

Q0
0 := C0,
Qi0 := Ci + eAiτiGiQi−1

0

(4)

for i = 1, . . . ,m. Then it holds

R(0,ti+1)
σ = Qi0 for i = 0, 1, . . . ,m

and the system is reachable on [0, T ] iff Rn = Qm0 .
Proof: i = 0 describes an unswitched system with

mode 0, whose reachable space is given by C0 = Q0
0. The

case i = 1 is the single switch case shown in Lemma 3.
Analogously to Lemma 3 it holds for i ≥ 1

R(0,ti+1)
σ = Ci + eAiτiGiR(0,ti)

σ .

Hence it holds by induction

R(0,ti+1)
σ = Qi0 for i = 0, 1, . . . ,m

and the reachability criterion follows by Lemma 1.

D. Observability

Lemma 4 (Single switch, [8, Lem. 8.9]): Consider a
switched ODE with jumps (1) with single switch signal σ1.
The unobservable space is then given by

UO(0,T )
σ1

= U0 ∩ e−A0τ0G−1
1 U1,

where U0 and U1 are the usual unobservable spaces of the
unswitched DAE ẋ = A0x, y = C0x and ẋ = A1x, y =
C1x.

Theorem 3 (General switching signal, [10, Thm. 1]):
Consider a switched ODE with jumps (1) with switching
signal (2) and define

Mm
m := Um,

Mm
i := Ui ∩ e−AiτiG−1

i+1M
m
i+1

(5)

for i = m− 1, . . . , 0, where Ui denotes the usual unobserv-
able spaces of the unswitched ODEs ẋ = Aix, y = Cix.
Then it holds

UO(ti,T )
σ≥ti

=Mm
i for i = 0, . . . ,m

and the system is observable on [0, T ] iff Mm
0 = {0}.

E. Determinability

Lemma 5 (Single switch, [8, Lemma 8.11]): Consider a
switched ODE with jumps (1) with single switch signal σ1.
The undeterminable space is then given by

UD(0,T )
σ1

= eA1τ1G1U0 ∩ U1.
Theorem 4 (General switching signal, cf. [10, Thm. 2]):

For a switched ODE with jumps (1) with switching signal
(2) define

N 0
0 := U0,

N i
0 := Ui ∩ eAiτiGiN i−1

0

(6)

for i = 1, . . . ,m. It holds

UO(0,ti)
σ = N i

0 for i = 0, . . . ,m

and the system is determinable on [0, T ] iff {0} = Nm
0 .

Proof: The statement is shown by induction. i = 0 is
the unswitched case. The induction step is analogous to the
single switch result:

For the induction step i→ i+ 1 let

xi+1 ∈ UD(0,ti+1)
σ .

Hence there exists (0, x, y) ∈ Bσ with x(t−i+1) = xi+1 and
y(0,ti+1) ≡ 0. y(0,ti) ≡ 0 gives x(t−i ) ∈ UD(0,ti)

σ , which is
N i

0 by induction. Hence x(t−i+1) ∈ eAiτiGiN i
0 . y(ti,ti+1) ≡ 0

yields x(t−i+1) ∈ Ui. All in all we obtain

xi+1 = x(t−i+1) = Ui ∩ eAiτiGiN i−1
0 = N i

0.

For the other inclusion let xi+1 ∈ N i
0 = Ui ∩ eAiτiGiN i−1

0 .
Thus there exists xi ∈ N i−1

0 with xi+1 = eAiτiGixi. By the
induction assumption it holds N i

0 = UD(0,ti)
σ , hence there

exists (0, x, y) ∈ Bσ with x(t−i ) = xi and y(0,ti) ≡ 0.
x(t−i+1) ∈ Ui gives y(ti,ti+1) ≡ 0. All in all, we have
y(0,ti+1) ≡ 0 and thus xi+1 = x(t−i+1) ∈ UD(0,ti+1)

σ .
The determinability criterion follows by Lemma 1.



Remark 2: It follows that the system theoretic properties
do not depend on τm > 0. Hence a system is control-
lable/reachable/observable/determinable on [0, T ] iff it has
the property on [0, T ′] for T, T ′ > tm. In particular, the sys-
tem theoretic properties are the same for all T corresponding
to the switching signal σ. The corresponding spaces might,
however, depend on the precise time-interval.

IV. DUAL SYSTEM

To derive an adjoint system for switched ODEs with jumps
we recapitulate the derivation of the adjoint system for ODEs
given in [2], [13] and [14]. The distinction between adjoint
and dual system is not necessary for ODEs but turns out to
be helpful for switched ODEs with jumps.

Although we defined switched ODEs for C∞pw-solutions,
the following operators will be defined on L2 as we want to
use their L2-adjoints. However, for the interpretation of these
adjoint operators we restrict ourselves to C∞pw([0, T ],Rn) ⊂
L2([0, T ],Rn) =: Xn.

A. Ajoint of ODEs

Consider first a linear ODE

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(7)

The following three mappings characterize the system (7)
uniquely.

1) input-state-map

ηT : Xq → Xn, u(·) 7→ Bu(·),

mapping an input to the corresponding system’s inho-
mogenity;

2) state-state-map

ωT : Rn×Xn → Rn×Xn, (x0, g(·)) 7→ (x(T ), x(·)) ,

where x(t) is given by eAtx0 +
∫ t

0
eA(t−t′)g(t′)dt′. ωT

maps an initial state and an inhomogenity to a final
state and the trajectory;

3) state-output-map

τT : Xn → Xp, x(·) 7→ Cx(·) = y(·),

mapping the state trajectory to the output trajectory.
Lemma 6 ([13, Section 2.2]): The adjoint operators of

ηT , ωT , τT are given by:

η∗T : Xn → Xq, p(·) 7→ B>p(·),
ω∗T : Rn ×Xn → Rn ×Xn, (pT , h(·)) 7→ (p(0), p(·)) ,
τ∗T : Xp → Xn, ua(·) 7→ C>u(·),

where p(t) is given by e−A
>(t−T )pT−

∫ t
T

e−A
>(t−t′)h(t′)dt′

η∗T , τ∗T and ω∗T characterize the system

ṗ = −A>p− C>ua,
ya = B>p.

(8)

on [0, T ] going backwards in time ([2, II, Kapitel 11.3]). We
call this system adjoint system.

B. Adjoint of switched ODEs with jumps

Generalizing ηT , ωT and τT to switched ODEs with jumps
gives

ηT : Xq → Xn, u(·) 7→ Bσu(·),
ωT : Rn ×Xn → Rn ×Xn, (x0, g(·)) 7→ (x(T ), x(·)) ,
τT : Xn → Xp, x(·) 7→ Cσx(·) = y(·),

where x(t), t ∈ [ti, ti+1), is defined by

x(t) = eAi(t−ti)Gi

[
eAi−1τi−1Gi−1

(
. . .(

eA0(t1−0)x0 +

∫ t1

0

eA0(t1−t′)g(t′)dt′
)
· · ·
)

+

∫ ti

ti−1

eAi−1(ti−t′)g(t′)dt′
]

+

∫ t

ti

eAi(t−t′)g(t′)dt′.

Lemma 7 (Adjoint mappings for switched ODEs with jumps):
The adjoint mappings to ηT , ωT , τT are given by

η∗T : Xn → Xq, p(·) 7→ B>σ p(·),
ω∗T : Rn ×Xn → Rn ×Xn, (pT , h(·)) 7→ (p(0), p(·)) ,
τ∗T : Xp → Xn, ua(·) 7→ C>σ ua(·),

where p(t), t ∈ [ti, ti+1), is given by

p(t) = eA
>
i (ti+1−t)G>i+1

[
. . .

(
eA
>
mτmpT

+

∫ T

tm

eA
>
m(t′−tm)h(t′)dt′

)
· · ·
]
+

∫ ti+1

t

eA
>
i (t′−t)h(t′)dt′.

Proof: For the proof we have to show that

〈ηT (u(·)), p(·)〉L2
=〈u(·), η∗T (p(·))〉L2

,

〈τT (x(·)), ua(·))〉L2
= 〈x(·), τ∗T (ua(·))〉L2

,

which directly follows from the definition, and

〈ωT (x0, g(·)), (pT , h(·))〉Rn×L2

= 〈(x0, g(·)), ω∗T (pT , h(·))〉Rn×L2
,

which can be shown with straightforward (but lengthly)
calculations, for details see [3, Lem. 5.3.1].

These mappings describe the system

d

dt
p(t) = −A>σ p(t)− C>σ ua(t), t /∈ {t1, . . . , tm} ,

p(t−) = G>σ(t+)p(t
+), t ∈ {t1, . . . , tm} ,

ya(t) = B>σ p(t)

(9)

going backward in time. This system is called adjoint system.
While a switched ODE can be inverted in time, this does
not hold true for switched ODEs with jumps as the jump
mappings might be singular. The jumps p(t−i ) = G>tip(t

+
i )

lead to the condition p(t−i ) ∈ imG>ti for all switching times
ti. Hence (9) does not have a solution for every initial
condition p(0) = p0. Furthermore, the solution of the adjoint
system for an initial value problem does not have to be
unique.



C. Alternative derivation

Another approach to deriving the adjoint system is by
considering the equation

d

dt

(
p>x

)
= 0

giving adjointness for homogeneous ODEs ([2]) and gener-
alize it to systems with inputs and outputs.

This approach was taken by [14]. It leads to the condition

d

dt

(
p>x

)
− y>a u+ u>a y = 0. (10)

and the corresponding adjoint behavior

Bad
σ := { (ua, p, ya) | (10) holds for all (u, x, y) ∈ Bσ } .

To interpret (10) for switched ODEs with jumps one has
to reformulate the switched ODE with jumps in the space
of piecewise smooth distributions, see [12]. However, the
adjoint systems equations are not uniquely defined by the
adjoint behavior (see [3]). Nevertheless, this approach is
of some interest because it can be used to study duality
for switched DAEs (see [5]), where the approach based on
adjoint mappings is not applicable because the underlying
distributional solution space cannot be embedded into L2.

D. Dual system of switched ODEs with jumps

The adjoint of a switched ODE with jumps is not causal,
i.e. it does not have unique solutions for initial value prob-
lems. It is however anticausal, i.e. causal backwards in time.
Thus we consider the time inverted version of (9), which we
denote as dual system:

d

ds
z(s) = A>σ̄ z(s) + C>σ̄ ud(s), s /∈ {s1, . . . , sm} ,

z(s+) = G>σ̄(s−)z(s
−), s ∈ {s1, . . . , sm} ,

yd(s) = B>σ̄ z(s)

(11)

with inverted time s := T − t, si := T − ti for i = 1, . . . ,m
and inverted switching signal σ̄(s) = σ(t).

The dual of a switched ODE with jumps is again a
switched ODE with jumps (after relabeling the impact matri-
ces of the dual as Ĝσ(s+) := G>σ(t+)), the dual of a switched
ODE is again a switched ODE. For σm this relabeling gives
Ĝi = G>i+1. Furthermore, the dual of a dual system is the
original system.

It turns out that it would be preferable to label the jump
matrices G according to the switching time and not to the
mode that is switched to. We stick to the notation of [8] as
this makes it in fact more intuitive to apply the results on
the system theoretic properties on the dual system.

V. DUALITY OF SWITCHED ODES WITH JUMPS

In order to derive a duality statement for switched ODEs
with jumps the recursions for the system theoretic properties
are revised for the dual system (11). By “ ˆ ” we denote
matrices and subspaces referring to the dual system. Note
that the switching signal for the dual system is inverted, i.e.
it goes from mode m to mode 0.

0 σ = 0 t1 σ = 1

G1

T

t

T σ̄ = 0 s1 σ̄ = 1 0

s

Ĝ0 = G>1

Fig. 1. Jump matrices G1, Ĝ0 = G>
1 for a switched ODE with jumps

and its dual.

Recall that for each mode i ∈ {0, . . . ,m} we have

Ĉi = U⊥i and Ûi = C⊥i

A recursive equation for the controllability of the dual
system is given by

P̂0
0 = Ĉ0 = (U0)

⊥
,

P̂0
i = Ĉi + e−ÂiτiĜ−1

i−1P̂
0
i−1

= (Ui)⊥ + e−A
>
i τiG−>i P̂

0
i−1

(12)

for i = 1, . . . ,m. Analogously, for the reachability of the
dual system we have

Q̂mm = Ĉm = (Um)
⊥
,

Q̂im = Ĉi + eÂiτiĜiQ̂i+1
m

= (Ui)⊥ + eA
>
i τiG>i+1Q̂i+1

m

(13)

for i = m − 1, . . . , 0. Observability of the dual can be
described by

M̂0
0 = Û0 = (C0)

⊥
,

M̂0
i = Ûi ∩ e−ÂiτiĜ−1

i−1M̂
0
i−1

= (Ci)⊥ ∩ e−A
>
i τiG−>i M̂

0
i−1

(14)

for i = 1, . . . ,m. Finally, for the determinability we get

N̂m
m = Ûm = (Cm)

⊥
,

N̂ i
m = Ûi ∩ eÂiτiĜ−1

i N̂
i+1
m

= (Ci)⊥ ∩ eA
>
i τiG−>i+1N̂

i+1
m

(15)

for i = m− 1, . . . , 0.
These recursions are illustrated in Figure 2.
Theorem 5 (Duality of switched ODEs with jumps): For

a switched ODE with jumps (1) with switching signal (2)
and dual system (11) it holds:

Observability Reachability

Determinability Controllability.

dual

dual



Controllability recursion Determinability recursion of the dual

0 t1 t2 T

tP2
2P2

1P2
0

T s1 s2 0

s N̂ 2
2N̂ 1

2N̂ 0
2

Reachability recursion Observability recursion of the dual

0 t1 t2 T

tQ2
0Q1

0Q0
0

T s1 s2 0

s M̂0
2M̂0

1M̂0
0

Observability recursion Reachability recursion of the dual

0 t1 t2 T

tM2
2M2

1M2
0

T s1 s2 0

s Q̂2
2Q̂1

2Q̂0
2

Determinability recursion Controllability recursion of the dual

0 t1 t2 T

tN 2
0N 1

0N 0
0

T s1 s2 0

s P̂0
2P̂0

1P̂0
0

Fig. 2. Recursions for switched ODE with jumps and its dual for σ2.

Proof: It holds for the recursions of the original
switched ODE with jumps (3)-(6) and the recursions for its
dual (12)-(15):

(Pmi )
⊥

= N̂ i
m,

(
N i

0

)⊥
= P̂0

i ,

(Mm
i )
⊥

= Q̂im,
(
Qi0
)⊥

= M̂0
i .

Remark 3: In Remark 1 we restricted our attention to
switches on the interval [0, T ]. Considering also switches
ti > T destroys the duality. First of all, the dual system
does not have a switching signal corresponding to Definition
1. Furthermore, the switch ti > T does not influence the
system theoretic properties of the original system on [0, T ],
but it will reduce the feasibility set at time s = 0− for the
dual system: Consider the switched ODE with jumps with
(B0, C0) = (0, 0) and G1 = 0 with switching time t1 > T
(system matrices that are not relevant were not specified).
The system is neither controllable, reachable, observable nor
determinable on [0, T ]. The dual system has a switch at
s1 = T − t1 < 0 with jump matrix G>1 = 0. As C0 = 0
it holds z(s) = 0 for s ≥ s1. Hence z(0−) = 0 for
every solution and the dual is controllable, observable and
determinable on [0, T ]. However, it is not reachable on [0, T ].

A final example might illustrate the importance of time-
inversion:

Example 1: Consider the single switch problem with

Aσ1
≡
[
0 0
0 0

]
, G1 =

[
1 −1
0 0

]
, B0 =

[
0
1

]
, B1 =

[
0
0

]
,

C0 =
[
0 0

]
, C1 =

[
1 0

]
.

The system is controllable and determinable, but neither
observable nor reachable. Hence its dual is by Theorem 5
determinable and controllable, but not reachable or observ-
able.

A naive computation of the dual omitting the time-
inversion would lead to a system that is neither controllable,
reachable, observable nor determinable. Hence the time-
inversion is in fact crucial for the duality result.

VI. CONCLUSIONS

We have introduced the dual of a switched ODE with
jumps via a time-inversion of the adjoint systems. The latter
was defined formally via adjointness of the input-state-,
state-state- and state-output-maps. The time-inversion is
necessary to obtain a causal system again, i.e. in contrast
to switched ODEs (without jumps) the dual and adjoint
are different in nature. Based on recent controllability and
observability characterization it is then possible to proof
a duality result for switched ODEs with jumps. It should
be noted that here controllability and reachability as well
as observability and determinability are not equivalent
and the duality pairs are controllability determinability
and reachability observability (and not as usually
controllability observability). Since the solution behavior
of switched ODEs with jumps are very similar to the
solution behavior of switched DAEs the ideas presented
here open the door to also establish a duality result for
switched DAEs [5].
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[8] Mihály Petreczky, Aneel Tanwani, and Stephan Trenn. Observability
of switched linear systems. In Mohamed Djemai and Michael Defoort,
editors, Hybrid Dynamical Systems, volume 457 of Lecture Notes in
Control and Information Sciences, pages 205–240. Springer-Verlag,
2015.

[9] Zhendong Sun and Shuzhi Sam Ge. Switched linear systems. Com-
munications and Control Engineering. Springer-Verlag, London, 2005.

[10] Aneel Tanwani, Hyunngbo Shim, and Daniel Liberzon. Observability
implies observer design for switched linear systems. In Proc. ACM
Conf. Hybrid Systems: Computation and Control, pages 3 – 12, 2011.

[11] Aneel Tanwani and Stephan Trenn. On observability of switched
differential-algebraic equations. In Proc. 49th IEEE Conf. Decis.
Control, Atlanta, USA, pages 5656–5661, 2010.

[12] Stephan Trenn and Jan C. Willems. Switched behaviors with impulses
- a unifying framework. In Proc. 51st IEEE Conf. Decis. Control,
Maui, USA, pages 3203–3208, December 2012.

[13] Jochen Trumpf. On the geometry and parametrization of almost
invariant subspaces and observer theory. PhD thesis, Universität
Würzburg, Fakultät für Mathematik und Informatik, 2003.

[14] Arjan van der Schaft. Duality for linear systems: External and state
space characterization of the adjoint system. In Bernard Bonnard,
Bernard Bride, Jean-Paul Gauthier, and Ivan Kupka, editors, Analysis
of Controlled Dynamical Systems, volume 8 of Progress in Systems
and Control Theory, pages 393–403. Birkhäuser Boston, 1991.


