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For differential-algebraic equations (DAEs) an observability notion is considered which assumes the input to be unknown and

constant. Based on this, an observer design is proposed.

1 Introduction

Classical observability assumes the system’s input to be
known. For systems with unknown inputs, [S] and [3] pro-
posed to assume the inputs to be governed by a known dy-
namic and add this dynamic to the system. We will generalize
this approach in the simplest case, i.e. for constant inputs, to
DAE:s.

Constant-input detectability can be defined similar to
constant-input observability. An observer for constant-input
detectable systems (with time-varying input) will be consid-
ered. In the last section, the notion of constant-input observ-
ability will be applied to a power network model. It turns out
that the property solely depends on the underlying graph and
can be described by the Laplacian.

Notation 1.1 For a matrix M € R™*™ and two index sets
V,W C {1,...,n} denote by My y € RIVIXIWI the sub-
matrix of M consisting of the rows corresponding to V' and

the columns corresponding to W. Analogously, the subvector
zy € RVl of 2 € R™ is defined.

2 Constant-input observability

We consider linear differential-algebraic equations of the
form

=

K-
=

[

Ax(t) + Bu(t),
y(t) = Cz(t) + Du(t)

(la)
(1b)
with E, A € R"*" B € R"*P, C € R?*™ and D € RI*P.
In the remainder, the time-dependence will not be stated ex-

plicitly. We assume regularity of the matrix pencil (E, A), i.e.
det(sE — A) € R[s] \ {0}. The behavior of (1) is given by

B :={(u,z,y) €C™ | (u,z,y) solves (1) }.

Definition 2.1 The system (1) is observable iff it holds for

all (ulvxlayl) ) (u2,$2>y2) S B:
Uy =u2 AN y1=Y2 = 1 =T

The system (1) is constant-input observable iff it holds for all
(u1,21,y1), (u2, 2, y2) € B with uy, us constant:
Yy1=Y2 = X1 ==T2 AUy =us.
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Constant-input observability can be characterized using the
augmented system:

B0k a0 o

The augmented system (2) is regular iff (1) is regular. Fur-
thermore, both systems have the same index.

Lemma 2.2 ([4]) The system (1) is constant-input observ-
able iff it is observable and it holds

Ker {é g] — {0},

For ker [ B] = {0}, constant-input observability is weaker
than strong observability (as defined in [2]):

(©))

Example 2.3 The system
. 0 -1 1
T = {0 1}1‘—1— {O}u, Y = [1 O}x
is constant-input observable, but not strong observable. In-
deed, z(0) = (9) and u(t) = €’ give y = 0.

3 Constant-input observer

Based on constant-input detectability we will define an ob-
server and apply it to systems with nonconstant input.

Definition 3.1 The system (1) is constant-input detectable
iff for all (u1,x1,y), (u2,z2,y) € B with uy, us constant it
holds:

U =us A tlim x1(t) — z2(t) = 0.

It is equivalent to detectability of (2) together with the
blockmatrix condition (3).

Let the regular DAE (1) be constant-input detectable. Con-
structing an observer for the then detectable augmented sys-
tem (2) gives

—d (% ~ (T .
E% <’&> :A(a>+L(y_y)7 (4a)

(4b)
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with observer gain L. If (1) has a time-varying input u, the

EITOr €4y 1= (5:3 ) of the observer is described by
= - = of .
Eeéy, = (A — LC') €xu + L} U. ®))

For an ODE, the observer gain can be chosen such that (5)
is asymptotically stable. Hence the error e, is bounded if
1 is bounded and it converges to zero if u does so. For the
detectable, regular DAE (2) an observer of the form (4) can
be constructed [1]. If the system (2) is impulse-observable
(see [1]), we can achieve an index-1 observer, which guaran-
tees that bounded u implies bounded e,,, and & — 0 implies
ezv — 0. Else the observer might have a higher index and we

would have to bound 1, ..., u(™ to get e, bounded. (2) is
impulse-observable iff (1) is impulse-observable, i.e. iff
E A
rank [0 C'| =n+rankF.
0 F

4 Application to power networks

A classical model for a power network is the swing equa-
tion [6]. It describes a transmission grid consisting of syn-
chronous generators, loads and transmission lines. The gen-
erators are described by ODEs (6a). The loads are modeled
as ODEs (6b) or algebraic constraints (6¢). The transmission
lines are represented by the load flow equations (6d), a sim-
plification of the power flow equations: f;(6) describes the
load flow from node 7 to the neighboring nodes. The overall
system is then

M;0; + Dif; = P; — f;(6), icg, (6a)
Dib; = P; — f;(0), iedl, (6b)
0=P — fi(0), iecl, (6¢c)
fi(0) = Y sin(0; —0;), i€N. (6d)
j#i

where

e §; is the voltage phase angle at node ¢,

e M; is the moment of inertia at generator node 4,

e D, is a damping constant at node ¢,

e P, is the external power infeed/extraction at node ¢,
e Y} ; is the admittance between node 7 and node j,

e cl,dl,g C {1,...,n} =: N are the index sets of all
constant load nodes, dynamic load nodes and generator
nodes, respectively.

A linearization of (6) gives

Ei(t) = Ax(t) + Bu(t) @)
with
0 I 0 0 0 0 O
| Myg O 0 0 |1 0 0
b= 0 0 Dga Of’ Bi= 0 I of’
0 0 0 0 0 0 I

—I 0 0 0

A= Dgg Lgg Lgai Lga
’ 0 Lay Laa Laa
0 Ly Laa Lea
and
0, Py
xr = 9 s u = Pdl
Oar P
ecl cl

Here, w = 99 is the angular velocity at the generators and L; ;
is defined by L; j := —Y; jfori # jand L; ; = Zj# Y; ;. L
is a Laplace matrix. The DAE (7) is regular (and of index one)
iff det(Ler,cr) # 0, i.e. if there is no connected component of
constant load nodes.

A natural choice for the output y of (7) is to assume that
for a certain subset S C N of nodes both state and input
are directly available in the output, i.e. measured, while for
S¢ = N\ S no output information is available. This means
the output can be written as

|0 Isn 0
Yy = {0 0 ]x-i— LSJV] U.

Theorem 4.1 ([4]) The regular system (7), (8) is constant-
input observable iff

®)

ker LS,S“ = {0} (9)

(9) is also equivalent to constant-input detectability and
strong observability.

Constant-input observability of (7), (8) depends solely on
L, i.e. on the topology of the underlying graph. Direct conse-
quences of this result are that at least every second node has
to be in S and any node not in .S has to be directly connected
to anodein S.
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