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Abstract— To determine the switching signal and the state
of a switched linear system, one usually requires mode observ-
ability. This property requires that all individual modes are
observable and that the modes are clearly distinguishable. In
theory, mode detection allows to determine the active mode in
an arbitrarily short time.

If one enlarges the observation to an interval that contains
a switch, both assumptions (observability of each mode and
clearly distinct dynamics) can be relaxed. In [2] we formalized
this observability notion, which we called switch observability.
This concept is of particular interest for fault identification.

Based on switch-observability, we propose an observer. This
observer combines the information obtained before and after a
switching instant to determine both the state and the switching
signal. It is analyzed and illustrated in an example.

I. INTRODUCTION

Switched systems can be used to model active switching or
component failures of a physical system, e.g. the line outage
of a power network. Fault identification is then a problem
related to determining the switching signal and possibly also
the state of the system. See [5] for a related problem for-
mulation. Mode detection allows to determine the switching
signal, but requires observability of each individual mode
and clearly distinct dynamics. For fault identification, one
can relax the requirement as we only need to determine the
switching signal if a switch occurs. In [2] we formalized this
as switch observability: The combined information before
and after the switch has to suffice to determine the switching
signal and the state.

The observer design for known switching signals has been
considered e.g. in [8]. For other works on switching signal
and state observation, see [1], [6]. In [1] the problem of
determining state and switching signal is separated: At first
the switching signal is estimated and, having this, the state is
estimated. The procedure relies on observability of all modes.
In [6], an observer is proposed under the assumption that
a common Lyapunov function exists. Again, the problem
of mode and state estimation is considered separately. In
contrast to this, we want to allocate state information over
two modes to arrive at both a state and a switching signal
estimation.

II. SWITCH-OBSERVABILITY

A switching signal is a piecewise constant, right-
continuous function σ : R → P := {1, . . . , N}, N ∈ N,
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with locally finitely many discontinuities. The discontinuities
of σ are also called switching times:

Tσ := { tS | tS is a discontinuity of σ } .

We assume that all switches occur for t > 0, i.e. Tσ ⊂ R>0.
Consider switched ODEs of the form

ẋ = Aσx+Bσu, x(0) = x0,

y = Cσx+Dσu,
(1)

with switching signal σ, system matrices Ai ∈ Rn×n,
Bi ∈ Rn×q , Ci ∈ Rp×n, Di ∈ Rp×q for all i ∈ P and
smooth input u : R → Rq . Denote solution and output of
(1) by x(x0,σ,u) and y(x0,σ,u), respectively. We denote the
unswitched ODE as

Σ :
ẋ = Ax+Bu, x(0) = x0,

y = Cx+Du.
(2)

Observability for known switching signals has been con-
sidered in [8]. As for nonlinear systems, the observability
of state (and switching signal) can depend on the input. In
the sequel, we consider a strong observability notion, i.e. we
require observability for all inputs. Alternative approaches
are requiring the existence of an input giving observability
or requiring observability for generic inputs.

In [2], two formulations of switch-observability were
introduced. The simpler version requires
(A1) u analytic,
(A2) kerBi ∩ kerBj ∩ ker (Di −Dj) = {0} ∀i 6= j.
In this work, we will stick to these assumptions. Note that
(A2) can be omitted and (A1) can be replaced by merely
smooth u if we consider equivalence classes of switching
signals (see [2]). The proposed observer works also in this
case. Actually, the observer works even for less regular
inputs as smoothness is in particular necessary to determine
switching times.

Definition 1: The system (1) is called strongly (x, σ1)-
observable, or switch observable iff for all smooth u and all
x0 6= 0, σ non-constant, x̃0 and σ̃ it holds

(x0 6= x̃0 ∨ σ 6≡ σ̃) ⇒ y(x0,σ,u) 6≡ y(x̃0,σ̃,u).
Without the assumption “σ non-constant”, we arrive at

strong (x, σ)-observability, or mode observability. This clas-
sical concept requires observability of each mode and is
strictly stronger than switch-observability. A weaker notion is
that of switching time observability: For tS a switching time
of σ, the output y(x0,σ,u) has to be distinct from y(x̃0,σ̃,u)

for σ̃ constant in a neighborhood of tS . For details, see [2].
Switching-time observability corresponds to fault detection,
switch observability to fault identification.



Remark 1 (Notations): For the characterization of
strong (x, σ1)-observability, we need the following
notations/concepts:

• Let O[ν]
i denote the Kalman observability matrix for

mode i with ν row blocks, i.e.

O[ν]
i =

[
C>i (CiAi)

> · · ·
(
CiA

ν−1
i

)>]>
.

• Let Γ
[ν]
i denote the Hankel matrix for mode i with ν

row blocks and ν column blocks, i.e.

Γ
[ν]
i =


Di

CiBi
. . .

...
. . . . . .

CiA
ν−2
i Bi · · · CiBi Di

 .
• Let u[k] denote the vector of u and its first k − 1

derivatives. Then we have for the solution of (1):

y
[ν]
(x0,σ,u)(t

±) = O[ν]
σ(t±)x(x0,σ,u)(t)+Γ

[ν]
σ(t±)u

[ν](t) ∀t,

where f(t±) denotes the limit from above/below at t,
i.e. lims↘t f(t) and lims↗t f(t).

• For two modes i, j let Σi,j denote the augmented system
given by

Σi,j :
ξ̇ =

[
Ai 0
0 Aj

]
ξ +

[
Bi
Bj

]
u,

y∆i,j
=
[
Ci −Cj

]
ξ + (Di −Dj)u.

• The set of controllable weakly unobservable states of
an unswitched system (2) is

R(Σ) :=

 x0 ∈ Rn

∣∣∣∣∣∣∣
∃u(·) smooth, T > 0 :

y(x0,u) ≡ 0

∧ x(x0,u)(T ) = 0

 ,

see [9]. For the augmented system Σi,j , R(Σi,j) de-
scribes the initial values x0, x̃0 that can be simul-
taneously steered to zero for the same output, i.e.
x(x0,i,u)(T ) = x(x̃0,j,u)(T ) and y(x0,i,u) ≡ y(x̃0,j,u) for
some input u.

These notations enable us to formulate a characterization
of strong (x, σ1)-observability:

Theorem 1 (See [2]): The switched system (1) is strongly
(x, σ1)-observable if and only if it satisfies

R(Σi,j) = {0} (3)

for all i, j ∈ P , i 6= j and

rank

[
O[4n]
i O[4n]

p Γ
[4n]
i − Γ

[4n]
p

O[4n]
j O[4n]

q Γ
[4n]
j − Γ

[4n]
q

]

= 2n+ rank

[
Γ

[4n]
i − Γ

[4n]
p

Γ
[4n]
j − Γ

[4n]
q

]
(4)

for all i, j, p, q ∈ P with i 6= j, p 6= q and (i, j) 6= (p, q).

(4) implies that we can distinguish the switching signals
σ 6= σ̃ given by

σ(t) =

{
i, t < tS ,

j, t ≥ tS ,
σ̃(t) =

{
p, t < tS ,

q, t ≥ tS ,

if at least one of the corresponding solutions x(x0,σ,u) and
x(x̃0,σ̃,u) is nonzero at the switching time tS . Condition (3)
deals with the case that the state is zero at the switching time:
It implies that the input-output behavior steering a state to
zero is uniquely related to some mode. Due to R(Σi,p) =
{0}, x(x0,σ,u)(tS) = x(x̃0,σ̃,u)(tS) = 0 and y(x0,σ,u) ≡
y(x̃0,σ̃,u) implies i = p or x(x0,σ,u)(t) = x(x̃0,σ̃,)(t) = 0
for t ≤ tS . R(Σj,q) = {0} gives an analogous result for
t ≥ tS .

III. SWITCH-OBSERVER

Based on knowledge of the switching times and strong
(x, σ1)-observability, we construct an observer for both state
and switching signal. The observer is described for the single
switch case, but can also be generalized to systems with
multiple switches.

In the sequel, we assume that the switching times are
known. It is reasonable to separate the fault identification
problem from that of fault detection as a much simpler
procedure is possible in this case. While fault detection is
in general more involved, it can be rather simple in some
applications, e.g. if switches cause jumps in the output. In
general, the switching times of a strongly switching time
observable system are described by{

t
∣∣∣ y[2n](t−) 6= y[2n](t+)

}
.

for a nonzero state x(x0,σ,u)(tS) at the switching instant. For
x(x0,σ,u)(tS) = 0, one might have to consider the change in
the output dynamic in a neighborhood of the switching time.

Assume that the system (1) is strongly (x, σ1)-observable
and that there is exactly one switching time tS ∈ (0, T ).
If x(x0,σ,u)(tS) 6= 0, the switching signal is given by the
unique solution

(
σ(t−S ), σ(t+S )

)
= (i, j) of

rank

[
y[4n](t−S ) O[4n]

i Γ
[4n]
i

y[4n](t+S ) O[4n]
j Γ

[4n]
j

]
= rank

[
O[4n]
i Γ

[4n]
i

O[4n]
j Γ

[4n]
j

]
.

Then x(x0,σ,u)(tS) = x1 can be determined as the solution
of [

y[4n](t−S )
y[4n](t+S )

]
=

[
O[4n]
i

O[4n]
j

]
x1 +

[
Γ

[4n]
i

Γ
[4n]
j

]
u[4n].

For x(x0,σ,u)(tS) = 0 the above procedure might not work.
In this case, we can uniquely reconstruct i and j by the input-
output data on [0, tS ] and [tS , T ], respectively. This means
we compare classical observers for each mode. In this case,
i and j are computed independently of each other.

Computing the output’s derivatives is clearly disadvan-
tageous even in the presence of small errors. Hence we
consider another approach, based on classical observers such
as the Luenberger observer [4].



In [8], an observer is proposed for switched systems with
known switching signal. A naive approach for the unknown
switching signal setup would be to use an observer as in [8]
for each possible mode sequence, giving in total N(N − 1)
known-signal observers, of which only one will behave
reasonably. It turns out that one can carry out the (partial)
state estimations on the pre- and post-switch interval inde-
pendently. Therefore we need only N classical observers,
one for each mode. The partial state results from pre- and
post-switch interval are then used to determine the correct
mode sequence and the state. Before describing the switch-
observer, we consider the observability problem with known
switching signal:

Known switching signal: Assume that the system (1) has
the known switching signal

σ(t) =

{
i, t < tS ,

j, t ≥ tS .

Strong (x, σ1)-observability implies observability for known
switching signals (in the sense of [8]), i.e. it implies

kerOi ∩ kerOj = {0} (5)

for all i 6= j. For i ∈ P let Zi be a matrix whose columns
form an orthonormal basis of

im
(
O[n]
i

)>
=
(

kerO[n]
i

)⊥
.

zi := Z>i x describes the observable part of x if the system
is in mode i. In this case, zi satisfies

żi = Z>i AiZiz + Z>i Biu,

y = CiZizi +Diu.
(6)

By Oo.p.
i we denote the Kalman matrix corresponding to (6),

i.e. Oo.p.
i = OiZi. Analogously, zj := Z>j x describes the

observable part of x in mode j, i.e. the observable part of x
on [tS , T ]. As (6) is observable, we can use a Luenberger-
observer to determine zi (and zj). (5) implies that there exists
a matrix Ui,j satisfying[

Zi Zj
]
Ui,j = I. (7)

With this, we compute the state x by the partial state
information as

x(tS) = U>i,j

[
zi(tS)
zj(tS)

]
.

As announced, we do not repeat this process N(N − 1)
times for unknown switching signals, but rearrange it to
reduce the computational effort. In the sequel, denote the
correct mode pair by (i∗, j∗). The procedure for unknown
switching signals is now described in three steps.

1. Pre-Switch interval: On the pre-switch interval [0, tS ],
we use for each mode i a classical observers for its observ-
able part (6): If the estimated output error r := ‖y − ŷi‖
becomes sufficiently small, i.e. if the mode captures the
input-output behavior sufficiently well, we consider this
mode to be reasonable for the pre-switch interval and add
it to the candidate set. In this case, we also save the partial

state estimation ẑpre
i := ẑi(tS). The procedure for one mode

i is described in Algorithm 1. It has to be repeated for each
mode.

Note that one might get several reasonable mode can-
didates for the pre-switch interval. This is admissible (and
not avoidable) for strongly (x, σ1)-observable systems. Only
with the information from the post-switch interval we will
be able to find the correct pre-switch mode within the set of
the now computed candidates. It is not sufficient to store the
best candidate.

Definition 2: For given x0, σ, u and an interval I, the
mode p ∈ P is called reasonable if there exists an initial
value x̃0 with

y(x0,σ,u) = y(x̃0,p,u) on I,

i.e. if mode p can describe the dynamic of y(x0,σ,u) on the
interval I.

Algorithm 1: Partial observer for pre-switch interval
Data: i, Zi, tS , y
Result: accept, ẑpre

i

accept ← false, ẑpre
i ← ∅;

Compute observable part (6);
Construct Luenberger observer for (6) on [0, tS ]: State
estimation ẑi, output estimation ŷi;
Set ri ← ‖y − ŷi‖;
if ri(t) < εr ∀t ∈ (tS − εT , tS) then

accept ← true;
ẑpre
i ← ẑi(tS);

2. Post-Switch interval: The algorithm for the post-switch
interval is very similar to that on the pre-switch interval. Note
that one cannot make use of the pre-switch state estimations
here as 1) they might be incomplete (as the modes do not
have to be observable), 2) they can differ greatly for different
modes. With the same computations as in the pre-switch
observer, but on the interval [tS , T ], we arrive at a set of
of reasonable mode candidates P+.
We furthermore need partial state estimations at time tS . One
could propagate the partial state estimation z̃j(T ) for mode
j back to time tS . For this, we need u on [tS , T ]. A more
reliable procedure, which also requires y on [tS , T ], is using
a Luenberger-observer on the interval [tS , T ] backwards in
time. (We can use the estimation z̃j(T ) as an initial value for
the observer.) This yields ẑpost

j := ẑj(tS). Such a “back- and
forth-observer” has been used in [7]. The procedure for one
mode j is described in Algorithm 2. It has to be repeated
for each mode

3. Combination of partial results: The previous steps
give us two sets P−, P+ of reasonable modes for the
pre- and post-switch interval as well as the corresponding
partial state estimations. We now have to use these partial
state estimations to reduce the set P− × P+ to the correct
mode pair (i∗, j∗). Intuitively, we have to check if the
partial state estimations for modes i and j “fit together”,



Algorithm 2: Partial observer for post-switch interval
Data: i, Zi, tS , y
Result: accept, ẑpost

i

accept ← false, ẑpost
i ← ∅;

Compute observable part (6);
Construct Luenberger observer for (6) on [tS , t]: State
estimation z̃i, output estimation ỹi;
Set ri,1 ← ‖y − ỹi‖;
if ri,1(t) < εr ∀t ∈ (tS − εT , tS) then

Construct Luenberger observer for (6) backwards in
time on [tS , T ]: State estimation ẑi, output
estimation ŷi. Initialize with ẑi(T ) := z̃i(T );
Set ri,2 ← ‖y − ŷi‖;
if ri,2(t) < εr ∀t ∈ (tS , tS + εT ) then

accept ← true;
ẑpost
i ← ẑi(tS);

i.e. if they give rise to an overall state estimation whose
corresponding output approximates the measured output on
the whole observation interval [0, T ].

Assume that both modes i and j are observable. Then ẑpre
i

and ẑpost
j are both estimations of the full state x(tS). For the

pair (i, j) to be correct we expect ẑpre
i ≈ ẑ

post
j .

As the modes are in general not observable, we have to
combine the partial state estimations to an overall estimation

x̂i,j = U>i,j

[
ẑpre
i

ẑpost
j

]
.

There usually is some freedom in choosing Ui,j (if it is
not square, i.e. if the spaces imZi and imZj overlap). We
assume henceforth that it is chosen as the Moore-Penrose-
pseudoinverse of Zi,j :=

[
Zi Zj

]
, i.e.

Ui,j := Z>i,j
(
Zi,jZ

>
i,j

)−1
.

Other choices are possible. One can, for example, weight the
influence of ẑpre

i and ẑpost
j on the intersection of imZi and

imZj .
To assert that the mode pair (i, j) ∈ P− ×P+ is correct,

we present two different methods methods:
1) Check that the overall state estimation x̂i,j fits to the

partial state estimations ẑpre
i and ẑpost

j , i.e. assert that∥∥∥∥[Z>i x̂i,j − ẑpre
i

Z>j x̂i,j − ẑ
post
j

]∥∥∥∥ (8)

is sufficiently small.
2) Check that the output produced by the overall state

estimation x̂i,j fits to the measured output. As the
modes i ∈ P−, j ∈ P+ are reasonable, they capture
the input-output behavior on the pre- and post-switch
interval sufficiently well. Hence we do not compare the
output produced by x̂i,j mode i and input u on [0, tS ]
with the correct output y(x0,σ,u), but with the output
of the partial estimation, i.e. the output produced by
ẑpre
i , mode i and input u. Similarly, we proceed on the

post-switch interval. As we compare solutions with the
same switching signals, we can restrict our attention to
the homogeneous case. Simulating the outputs can be
avoided by making use of the Kalman-matrices and
checking that∥∥∥∥[OiOj

]
x̂i,j −

[
Oo.p.
i ẑpre

i

Oo.p.
j ẑpost

j

]∥∥∥∥ (9)

is sufficiently small.
The first variant is faster, the second one takes into account
the effect errors in the overall state estimation have on the
output. We chose the second variant as a better error analysis
is possible in this case, see Section IV.

Now this final part is described in Algorithm 3.

Algorithm 3: The switch-observer for switched ODEs
Data: tS , T, P, y
Result: M, x̂i,j for (i, j) ∈M
P− ← ∅, P+ ← ∅, M← ∅;
for i ∈ P do

Compute Zi;
[accept, ẑpre

i ]←PartObsPre(i, Zi, tS , y);
if accept then
P− ← P− ∪ {i};

[accept, ẑpost
i ]←PartObsPost(i, Zi, tS , y);

if accept then
P+ ← P+ ∪ {i};

for i ∈ P−, j ∈ P+, i 6= j do
Construct Ui,j with (7);

x̂i,j ← U>i,j

[
ẑpre
i

ẑpost
j

]
;

if (9) < ε holds true then
M←M∪ {(i, j)};

The N classical observers on the pre- and post-switch
interval can be replaced by other classical observers such
as the Kalman filter. Note that the proposed algorithm does
not correspond to the idea of Kalman filter banks as we
allocate information from the intervals [0, tS ], [tS , T ] for an
overall estimate. On the intervals [0, tS ], [tS , T ] there might
be several suitable modes.

Remark 2 (Relaxing the assumptions): Strong (x, σ1)-
observability guarantees that the switch observer
(Algorithm 3) works for any initial value and any
input. It guarantees that we can reconstruct both state and
switching signal and that the result is unique. The algorithm
might still work for weaker assumptions:
• Analytic (or smooth) inputs were necessary for the

formulation of strong (x, σ1)-observability. For the ob-
server with known switching times, this is not required.
Any input that can be handled by the partial observers
(Algorithms 1 and 2) is feasible.

• Condition (3) is not essential for the observer: It is
required to cover the case of a zero state at the switch.



Without (3) we are still able to deal with all nonzero
states, i.e. with most cases and, in some applications,
all relevant cases.

• One can adapt the algorithm to work in a generic case
for some weaker condition than (4).

Remark 3 (Switching time detection): The proposed ob-
server assumes that the switching time is known. This
assumption allows for significant reduction in the algorithm’s
complexity. It is suitable for systems where a switch leads
to a state jump or, for DAEs, even to an impulse, and is thus
easy to notice. It is also useful in applications where a switch
has been detected, but not identified (fault identification).

Remark 4 (Time delay): The switch-observer gives a state
and switching signal estimation only after time T > tS , i.e.
the information about the switching instant is obtained with
a delay T − tS . Note that a delay is in fact necessary as
we have to wait for the individual observers to adapt (as we
cannot equip them with a correct initial state). One can use
other classical observers in Algorithms 1 and 2 to reduce the
required delay. One could also reduce the delay by trying
a smaller time delay T̃ < T in the switch-observer. At
time T̃ , one continues with step 3 (combination of partial
results) and, parallel to that, continues with step 2 (Post-
switch interval). The latter is only used if the third step (for
T̃ ) does not yield a unique result.

In [3], the concept of switch observability has been ex-
tended to homogeneous switched differential-algebraic equa-
tions (DAEs) and some ideas on an observer were presented.
A next step is to extend the procedure to inhomogeneous
switched DAEs.

IV. ERROR ANALYSIS

We give bounds on the state error and the output error for
the correct mode pair (i∗, j∗).

After that, we discuss the size of (9) for incorrect, but
reasonable mode pairs (p, q). We show that it is bounded
from below. This implies that for suitable tolerances the
switch-observer works correctly, i.e. the output M contains
only the correct mode pair (i∗, j∗).

The Luenberger observers on [0, tS ] and on [tS , T ] are
exponentially convergent for the correct mode i∗ and j∗,
respectively. The same holds true for reasonable modes, i.e.
modes that can model the given input-output behavior on
the relevant interval. Note that also other observers for the
individual modes can be used in Algorithms 1 and 2.

A. Error in the state estimation, correct mode pair

For the correct mode pair (i∗, j∗) we consider the error
propagation of the partial state estimations ẑpre

i∗ , ẑpost
j∗ to the

overall estimation x̂i∗,j∗ . Let x(x0,σ,u) be the correct solution
and the errors made by the Luenberger observers be given
by

εpre :=
∥∥ẑpre
i∗ − Z

>
i∗x(x0,σ,u)(tS)

∥∥ ,
εpost :=

∥∥ẑpost
j∗ − Z

>
j∗x(x0,σ,u)(tS)

∥∥ .
Then we have∥∥x(x0,σ,u)(tS)− x̂i∗,j∗

∥∥ ≤ ∥∥U>i∗,j∗∥∥√(εpre)
2

+ (εpost)
2
.

Hence the norm of U>i∗,j∗ is crucial. We consider several
cases:
• Full redundancy in the information: Assume that both

modes i∗, j∗ are observable. This implies that Zi∗ ,
Zj∗ are orthonormal and Ui∗,j∗ is given by Ui∗,j∗ =
1
2Z
>
i∗,j∗ , hence

∥∥U>i∗,j∗∥∥2
=
√

2.
• No redundancy in the information, orthogonal informa-

tion: Assume that the subspaces spanned by Zi∗ and
Zj∗ are orthogonal, i.e. Zi∗,j∗ is orthonormal. Then it
hold Ui∗,j∗ = Z>i∗,j∗ and

∥∥U>i∗,j∗∥∥2
= 1.

• Almost identical information: The subspaces spanned
by the matrices

Zi∗ =

[
1
0

]
, Zj∗ =

1√
1 + a2

[
1
a

]
are almost parallel for |a| small. Ui∗,j∗ is given by
Z−>i∗,j∗ , i.e.

Ui∗,j∗ =

[
1 −a−1

0
√

1 + a−2

]
and its norm can be estimated by

‖Ui∗,j∗‖22 ≥ 〈Ui∗,j∗
[
0
1

]
, Ui∗,j∗

[
0
1

]
〉 = 1 + 2a−2,

i.e. it becomes arbitrarily large for a→ 0.

B. Error in the output estimation, correct mode pair

We want to give a bound on (9) in Algorithm 3 for the
correct mode pair (i∗, j∗). Using

Oi∗ x̂i∗,j∗ −Oo.p.
i∗ ẑ

pre
i∗ = Oi∗

(
U>i∗,j∗

[
ẑpre
i∗

ẑpost
j

]
− Zi∗ ẑpre

i∗

)
= Oi∗

(
U>i∗,j∗

[
zpre
i∗ − ẑ

pre
i∗

zpost
j∗ − ẑ

post
j∗

]
− Zi∗(zpre

i∗ − ẑ
pre
i∗ )

)
,

we obtain∥∥Oi∗ x̂i∗,j∗ −Oo.p.
i∗ ẑ

pre
i∗

∥∥ ≤ ‖Oi∗‖ εpre

+ ‖Oi∗‖
∥∥U>i∗,j∗∥∥√(εpre)

2
+ (εpost)

2
,

or, separating the effects of the individual errors,∥∥Oi∗ x̂i∗,j∗ −Oo.p.
i∗ ẑ

pre
i∗

∥∥ ≤ ∥∥∥Oi∗ (Zi∗,j∗Z>i∗,j∗)−1
Zj∗
∥∥∥ εpost

+
∥∥∥Oi∗ ((Zi∗,j∗Z>i∗,j∗)−1 − I

)
Zi∗
∥∥∥ εpre.

A similar bound can be computed for∥∥Oj∗ x̂i∗,j∗ −Oo.p.
j∗ ẑ

post
j∗

∥∥.

C. Error in output estimation, wrong mode pair

We now want to show that for strongly (x, σ1)-observable
systems the error in the output estimation is bounded from
below for wrong mode pairs. This implies that for a suffi-
ciently small error bound in (9) we can prevent labeling false
mode pairs as correct. Then sufficiently strong Luenberger-
observers ensure that the correct mode is detected.

In the first part of this subsection, we assume that Algo-
rithms 1 and 2 worked correctly, i.e. that P− and P+ in



Algorithm 3 contain only reasonable modes for the pre- and
post-switch interval.

Now let p ∈ P−, q ∈ P+. Let xi∗,j∗ = x(x0,σ,u)(tS) be
the state at the switching time and U = u[n](tS). Then there
exist unique zpre

p , zpost
q with

Oi∗xi∗,j∗ + Γi∗U = Oo.p
p zpre

p + ΓpU,

Oj∗xi∗,j∗ + Γj∗U = Oo.p
q zpost

q + ΓqU.
(10)

However, due to (4) there does not exist a xp,q with[
Oi∗
Oj∗

]
xi∗,j∗ +

[
Γi∗

Γj∗

]
U =

[
Op
Oq

]
xp,q +

[
ΓpU
Γq

]
U.

This means for given x0, (i∗, j∗) and U we have

δ := dist
(

im

[
Op
Oq

]
,

[
Oi∗xi∗,j∗ + (Γi∗ − Γp)U
Oj∗xi∗,j∗ + (Γj∗ − Γq)U

])
> 0.

This δ now enables us to give a lower bound on the error.
Due to (10) we have

δ = dist
(

im

[
Op
Oq

]
,

[
Oo.p.
p zpre

p

Oo.p.
q zpost

q

])
.

For exact partial state estimation, this would be a lower
bound on (9). For non-ideal partial state estimations ẑpre

p ,
ẑpost
q we obtain∥∥∥∥[Opx̂p,q −Oo.p.

p ẑpre
p

Oqx̂p,q −Oo.p.
q ẑpost

q

]∥∥∥∥
≥
∥∥∥∥[Opx̂p,q −Oo.p.

p zpre
p

Oqx̂p,q −Oo.p.
q zpost

q

]∥∥∥∥− ∥∥∥∥[ Oo.p.
p

(
zpre
p − ẑpre

p

)
Oo.p.
q

(
zpost
q − ẑpost

q

)]∥∥∥∥
≥ δ −

∥∥Oo.p.
p

∥∥∥∥zpre
p − ẑpre

p

∥∥︸ ︷︷ ︸
:=δ2

−
∥∥Oo.p.

q

∥∥∥∥zpost
q − ẑpost

q

∥∥︸ ︷︷ ︸
:=δ3

As p ∈ P− and q ∈ P+ are assumed to be reasonable, their
“errors”

∥∥zpre
p − ẑpre

p

∥∥ as well as
∥∥zpost
q − ẑpost

q

∥∥ can be made
arbitrarily small by choosing a suitable observer gain.

We can also give a (very conservative) lower bound on
(8). Using Op = Oo.p

p Z>p we get∥∥∥∥[Oo.p.
p

(
Z>p x̂p,q − z

pre
p

)
Oo.p.
q

(
Z>q x̂p,q − z

post
q

)]∥∥∥∥ ≥ δ.
This implies∥∥∥∥[Oo.p.

p

(
Z>p x̂p,q − ẑ

pre
p

)
Oo.p.
q

(
Z>q x̂p,q − ẑ

post
q

)]∥∥∥∥ ≥ δ − δ2 − δ3,
which in turn gives∥∥∥∥[Z>p x̂p,q − ẑpre

p

Z>q x̂p,q − ẑ
post
q

]∥∥∥∥ ≥ δ − δ2 − δ3∥∥∥∥[Oo.p.
p 0
0 Oo.p.

q

]∥∥∥∥ .
V. EXAMPLE

Example 1: We consider the system given by the modes

(A1, B1, C1) =

([
2 0
0 −1

]
,

[
0
0

]
,
[
2 3

])
,

(A2, B2, C2) =

([
−2 0
0 −3

]
,

[
1
−1

]
,
[
1 1

])
,

(A3, B3, C3) =

([
−1 0
−32 3

]
,

[
1

8.2

]
,
[
−42 5

])
.

0 0.5 1 1.5 2
−100

−50

0

50 u
y

Fig. 1. Input and output for Example 1.
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ŷ1,3

ŷ2,1

ŷ2,3

Fig. 2. Output and output estimations for Example 1.

This system is strongly (x, σ1)-observable. The output for
u(t) = −e2t, x0 =

[
1
40 0

]>
and

σ(t) =

{
1, t < 1,

3, t ≥ 1.

is illustrated in Figure 1, together with the input u. On the
interval [0, 1], these dynamics can be achieved by modes 1
and 2. On the interval [1, 2], modes 1 and 3 are candidates
for the correct mode. Hence the observer (Algorithm 3) gives
P− = {1, 2}, P+ = {1, 3}. The partial state estimations ẑpre

1 ,
ẑpre

2 , ẑpost
1 , ẑpost

3 lead to the overall state estimations

x̂1,3 ≈
[

0.1798
−0.0418

]
, x̂2,1 ≈

[
−2.1701
0.0492

]
, x̂2,3 ≈

[
1.0110
−0.7807

]
.

The correct value is given by x(1) ≈
[
0.1853 0

]>
. We

already see that the wrong mode pairs (2, 1), (2, 3) lead to
completely wrong state estimations. This is advantageous as
it indicates that the wrong modes will lead to completely
wrong output estimations, making them easy to detect. These
wrong candidate pairs can easily be rejected in the final part
of Algorithm 3 as we have:

(i, j) Condition (8) Condition (9)
(1, 3) 0.084 0.049
(2, 1) 8.596 4.976
(2, 3) 2.177 5.517

In Figure 2, the output estimations ŷi,j based on the mode
pairs (i, j) are compared to the actual output y.

VI. CONCLUSIONS

The switch-observer can provide information on the
switching signal and the state even for unobservable switch-
ing signals. It combines the information before and after a
switching instant for obtaining an estimate on the switching
signal and the state. It is particularly useful if the considered
modes are not observable or have some common dynamic.



We investigated the algorithm as well as its error propagation
and considered an example.

A generalization of this observer to DAEs is currently
under investigation.
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