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Abstract—A bang-bang controller is proposed which is able to
ensure reference signal tracking with prespecified time-varying
error bounds (the funnel) for nonlinear systems with relative
degree one or two. For the design of the controller only the
knowledge of the relative degree is needed. The controller is
guaranteed to work when certain feasibility assumptions are
fulfilled, which are explicitly given in the main results. Linear
systems with relative degree one or two are feasible if the system
is minimum phase and the control values are large enough.

I. INTRODUCTION

Consider the single-input, single-output nonlinear system

ẋ = F (x, u), x(0) = x0 ∈ Rn,
y = H(x),

(1)

where F : Rn × R→ Rn, n ∈ N, is locally Lipschitz contin-
uous and H : Rn → R is continuous. For a given reference
signal yref : R≥0 → R, we would like to achieve approximate
reference signal tracking with a bang-bang feedback controller,
i.e. u(t) ∈ {U−, U+} for all t ≥ 0 and some U− < U+.
Furthermore, we are aiming for guaranteed transient behavior
of the error signal e := y−yref in the sense that the controller
guarantees strict time-varying error bounds given by a so-
called funnel

F := { (t, e) ∈ R≥0 × R | ϕ−(t) ≤ e ≤ ϕ+(t) } , (2)

where ϕ± : R≥0 → R is the prespecified (time-varying) error
bound with ϕ−(t)<0<ϕ+(t) for all t≥0, see also Figure 1.
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Fig. 1. The funnel F : A time-varying error bound.
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The controller is governed by a switching logic whose
output is a boolean variable q : R≥0 → {true, false} which
yields the control law

u(t) =

{
U−, if q(t) = true,

U+, if q(t) = false.
(3)

The overall feedback system is illustrated in Figure 2.
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Fig. 2. Overall system structure.

The main purpose of this paper is twofold: On the one hand,
we would like to find feasibility assumptions which take into
account that, in general, an input signal with only two values
cannot achieve arbitrary control objectives. On the other hand,
we would like to find a switching logic which achieves the
control objectives for feasible systems. We are aiming for
a universal controller in the sense that the definition of the
controller (given by the switching logic) does not involve the
systems dynamics at all.

The feasibility assumption can be further distinguished into
qualitative properties versus quantitative bounds of the systems
dynamics. A qualitative property like the relative degree (see
Definitions 2.1 and 3.1) yields different controller designs,
while quantitative bounds do not influence the controller
design but restrict the applicability of the controller. In this
paper we will present controller designs for the relative degree
one and two case.

We assume that the switching logic can also use derivatives
of the error signal; in fact, for the relative degree two case
the error e and its derivative ė is used to obtain the switching
signal. For the relative degree one case only the error itself is
needed.

Tracking control with prespecified strict time-varying er-
ror bounds has been studied first in [1] where the funnel
controller was introduced. Funnel control itself is based on
ideas from high-gain control and λ-tracking (see for example
the survey [2]). There have been several extensions of the
funnel controller, e.g. more general gain functions [3] and



higher relative degree via backstepping and filters [4], [5].
A similar approach with a switched controller was proposed
earlier in [6]; however, there the freedom to choose the
time-varying bounds was more restricted and the gain was
monotone. These results yielded universal controllers which
were able to control all systems with some qualitative property
(for example, relative degree one with stable zero dynamics).
However, the price of the generality is that the input must be
allowed to become arbitrarily large, which is problematic in
applications. The first result concerning the funnel controller
with input saturation was presented in [7] which was based
on a model of an exothermic reactor. We will later use this
model for illustrating the behavior of our bang-bang controller.
Until now input saturation was only considered for the relative
degree one case [8], [9]; input saturation for relative degree
two systems is work in progress [10]. The design of the
bang-bang funnel controller is inspired by the above results
on funnel control with input saturation and the feasibility
assumptions are very similar when U± are the bounds from
the input saturation.

The key advantages of the bang-bang funnel controller
in comparison to classical controllers are, firstly, the same
advantages the continuous funnel controller from [1] has: no
knowledge of the systems parameters is necessary for the
controller design and prespecified transient behavior can be
guaranteed. Secondly, in comparison to the continuous funnel
controller, the bang-bang funnel controller is much simpler
because it only uses two control values and doesn’t need
a time varying gain function. Furthermore, the bang-bang
funnel controller is a piecewise linear system and certain
aspects are therefore easier to analyze. Finally, the switching
logic is still well defined when the error leaves the funnel;
therefore, we believe the bang-bang funnel controller is also
more robust to time delays (this is ongoing research). However,
in applications where a continuous controller signal is desired
or where the input should not be saturated all the time, the
bang-bang funnel controller is not applicable.

Using the bang-bang controller governed by a discrete
switching logic together with a continuous system yields a
hybrid system (see e.g. [11] and the references therein for an
overview). The prespecified error bounds given by the funnel
can be seen as a time-varying generalization of the invariance
problem for hybrid systems as studied e.g. in [12]. In general,
the coupling of continuous and discrete dynamics could lead
to problems concerning the existence of solutions; however, by
implementing the switching logic with some hysteresis effect
this solvability problem can be avoided. For switched systems
(average) dwell times are important, because in practical
applications arbitrarily fast switching is often not possible and
from a mathematical point of view dwell times also exclude
so-called Zeno-behavior (i.e. infinitely many switches in finite
time). The main results in this paper also give conditions when
the switching times of the control input have an (average)
dwell time.

The structure of the paper is as follows. The main results
for the relative degree one case are given in Sections II and the

relative degree two case is considered in Section III. In both
cases, first the precise meaning of relative degree is defined.
Afterwards, the switching logic is given and some general
properties of the closed loop are highlighted. Afterwards, the
two main results, Theorem 2.4 and Theorem 3.4, are given.
For the relative degree one case we apply the bang-bang funnel
controller to an exothermic reactor model. In the Appendix, we
formulate Lemma A.1 which is a general statement ensuring
well-posedness of the closed loop illustrated in Figure 2.

Throughout the paper we use ‖f‖ for the supremum norm
of the function f : R → R; by |x| for x ∈ Rn we denote
the Euclidean vector norm and |A| denotes the induced norm
of the matrix A ∈ Rm×n. For defining predicates (i.e. for
functions with values in the set {true, false}) we use the
notation [statement] ∈ {true, false}. Solutions of differen-
tial equations are considered in the sense of Carathéodory, i.e.
solutions are assumed to be absolutely continuous and fulfill
the differential equation almost everywhere.

II. RELATIVE DEGREE ONE CASE

Definition 2.1 (Relative degree one): The system (1) is
said to have (global) relative degree one (with positive gain)
when there exist locally Lipschitz continuous functions f :
R × Rn−1 → R, h : R × Rn−1 → Rn−1, continuous g :
R×Rn−1 → R>0 and a diffeomorphism Φ : Rn → R×Rn−1,
x 7→ (y, z) which equivalently transforms (1) to

ẏ = f(y, z) + g(y, z)u, y(0) = y0, (4a)

ż = h(y, z), z(0) = z0, (4b)

where (y0, z0) = Φ(x0).
For the relative degree one case we propose the following

simple switching logic:

q(0−) = [e(0) ≥ 0],
q(t) = S(e(t), ϕ+(t), ϕ−(t), q(t−)),

(5)

where S : R×R×R×{true, false} → {true, false} is
the switching predicate given by

S(e, e, e, qold) := [e ≥ e ∨ (e > e ∧ qold)]. (6)

Since ϕ+(t) > ϕ−(t) for all t ≥ 0 the switching logic (5)
together with (3) can also be described by a state diagram as
shown in Figure 3.

u(t) = U− u(t) = U+

e(t) ≤ ϕ−(t)

e(t) ≥ ϕ+(t)

e(t) > ϕ−(t)

e(t) < ϕ+(t)

Fig. 3. The switching logic for the relative degree one case.

Note that for e > e, the following equivalence holds

S(e, e, e, qold) ⇔ ¬S(−e,−e,−e,¬qold),

which explains the symmetry in Figure 3.



The following lemma is essential to prove existence of
solutions of the closed loop.

Lemma 2.2 (Well-defined causal switching logic): For ev-
ery continuous error function e : [0, T ) → R, 0 < T ≤ ∞,
there exists a unique causal right-continuous switching signal
q : [0, T ) → {true, false} fulfilling (5). Furthermore,
if e is absolutely continuous with right-continuous bounded
derivative ė and

inf
t≥0

ϕ+(t) + inf
t≥0
−ϕ−(t) := λ+ + λ− > 0 (7)

then the switching signal has a positive dwell time τd > 0, i.e.
two switches of q are at least τd apart. In fact

τd ≥
λ+ + λ−
‖ė‖

.

Proof: The claimed properties all follow easily from
the observation that ϕ+(t) > 0 > ϕ−(t) for all t ≥ 0
which implies that after a switch of q (say triggered by
e(t1) ≥ ϕ+(t1) > 0) the continuous error function has to
evolve for some time until the next switch is triggered (by
e(t2) ≤ ϕ−(t2) < 0).

Note that in Lemma 2.2 we did not assume that the error
evolves within the funnel. A direct consequence of Lemma 2.2
and Lemma A.1 is the following result for the closed loop.

Corollary 2.3 (Closed loop well posed): Consider the sys-
tem (1) in closed loop with the bang-bang controller given
by (3) and (5), where e := y − yref for some continuous
reference signal yref : R≥0 → R. Then for every initial
value x0 ∈ Rn there exists a unique maximal solution
(x, q) : [0, ω) → Rn × {true, false}, 0 < ω ≤ ∞ of the
closed loop.

Proof: Under the above assumptions the error signal is
continuous, hence Lemma 2.2 ensures existence and unique-
ness of a right-continuous switching signal, therefore Lemma
A.1 yields the assertion.

Note that Corollary 2.3 neither claims nor assumes that
the error signal evolves within the funnel, even finite escape
time is not excluded at this point. To prove that the error
evolves within the funnel, we need some additional feasibility
assumptions which are formulated in the following theorem.

Theorem 2.4 (Relative degree one main result): Assume
that (1) has relative degree one, i.e. (1) is equivalent to (4).
Consider a funnel F as given by (2) and assume additionally
that the funnel boundaries ϕ± : R≥0 → R as well as the
reference signal yref : R≥0 → R are absolutely continuous
with right-continuous derivatives. Assume that the initial
conditions for (4) fulfill

y0 − yref(0) ∈ [ϕ−(0), ϕ+(0)], z0 ∈ Z0 ⊆ Rn−1

and assume that for every continuous y : [0,∞) → R with
ϕ−(t) ≤ y(t) − yref(t) ≤ ϕ+(t) for all t ≥ 0 and all
initial values z0 ∈ Z0 there exist a unique (global) solution

z : R≥0 → Rn−1 of the zero dynamics (4b); for t > 0 let

Zt :=

 z(t)

∣∣∣∣∣∣∣∣∣
z : [0, t]→ Rn−1 solves (4b) for some

z0 ∈ Z0 and for some y : [0, t]→ R
with ϕ−(τ) ≤ y(τ)− yref(τ) ≤ ϕ+(τ)
∀τ ∈ [0, t]

 .

If the feasibility conditions

U− <
ϕ̇+(t) + ẏref(t)− f(yref(t) + ϕ+(t), zt)

g(yref(t) + ϕ+(t), zt)

U+ >
ϕ̇−(t) + ẏref(t)− f(yref(t) + ϕ−(t), zt)

g(yref(t) + ϕ−(t), zt)

(8)

hold for all t ≥ 0 and all zt ∈ Zt then the closed loop
composed of the system (1) or, equivalently, (4) and the bang-
bang controller (3) governed by the switching logic (5) has
the following properties:

1) There exists a unique (global) solution (x, q) : R≥0 →
Rn × {true, false}.

2) The error e := y − yref evolves within the funnel, i.e.
(t, e(t)) ∈ F for all t ≥ 0.

3) If f and g are uniformly bounded on
⋃
t≥0[yref(t) +

ϕ−(t), yref(t) + ϕ+(t)] × Zt, ẏref is bounded and (7)
holds then the jumping times of u or, equivalently, the
switches of q have a positive dwell time τd > 0.

Before proving Theorem 2.4 we give some remarks.
Remarks 2.5: 1) The feasibility conditions (8) can be

simplified by using upper bounds for the funnel bound-
aries (and their derivatives), the zero dynamics, and the
reference signal (and its derivative):

U− < −
‖ϕ̇+‖+ ‖ẏref‖+ Fmax

Gmin
,

U+ >
‖ϕ̇−‖+ ‖ẏref‖+ Fmax

Gmin
,

(9)

where Fmax := max|y|≤Ymax,|z|≤Zmax |f(y, z)|,
Gmin := min|y|≤Ymax,|z|≤Zmax g(y, z) > 0,
Ymax := ‖yref‖ + max{‖ϕ+‖, ‖ϕ−‖} and Zmax is
an upper bound for the zero dynamics, i.e. all solutions
of (4b) with |y(t)| ≤ Ymax, for all t ≥ 0, fulfill
z(t) ≤ Zmax for all t ≥ 0 (in particular, the initial
value z0 must be bounded by Zmax). A consequence
of considering this more conservative feasibility
assumption is that U− < 0 and U+ > 0 has to hold
which is often too restrictive especially for nonlinear
systems, see Example 2.6.

2) Consider a linear system with relative degree one in
normal form [13] (see also [5, Lem. 3.5])

ẏ = αy + s>z + γu y(0) = y0,

ż = py +Qz z(0) = z0,

where α ∈ R, s, p ∈ Rn−1, Q ∈ R(n−1)×(n−1) and γ >
0. Assume that the initial value for the zero dynamics is
bounded say by M > 0. If the linear system is minimum



phase, i.e. Q is Hurwitz with |eQt| ≤ Ce−λt, C, λ > 0,
then boundedness of y implies

|z(t)| ≤ Ce−λt|z0|+
∫ t

0

Ce−λ(t−s)|p||y(s)| ds

≤ CM + C
λ Ymax =: Zmax.

Hence with Fmax = |α|Ymax + |s>|Zmax and Gmin = γ
the condition (9) is always fulfilled when U− < 0 and
U+ > 0 are large enough.

3) The sets Zt ⊆ Rn−1, t ≥ 0, are defined by considering
y : R≥0 → R as an input to the system governed by (4b).
For the definition of Zt it is not assumed that y solves
the closed loop, it is merely assumed that y evolved
within the funnel on the interval [0, t]. For the feasibility
assumptions (8), it is not needed that the sets Zt are
uniformly bounded as long as f and 1/g do not get
unbounded for unbounded t 7→ zt ∈ Zt. In particular,
it is therefore possible to apply the result also to time-
varying systems by the common trick of including time
as an additional differential equation ṫ = 1.

4) The bang-bang controller works also when the funnel
boundaries are not bounded away from zero; however,
then the length of the switching intervals will converge
to zero. The corresponding behavior for the continuous
funnel controller from [1] is that the gain k(t) grows
unbounded (however, all continuous funnel controller
results are only formulated for the case that the funnel
boundaries are bounded away from zero). In contrast to
the continuous funnel controller, this undesired behavior
can already be excluded by assuming (7) which allows
that one of the two funnel boundaries approaches zero.
In fact, (7) can be further weakened (cf. (16)) such that
both funnel boundaries can approach zeros, as long as
they don’t do it simultaneously.

Proof of Theorem 2.4: Corollary 2.3 already shows exis-
tence and uniqueness of a maximal solution (x, q) : [0, ω)→
Rn × {true, false}. We first show that (t, e(t)) ∈ F for all
t ∈ [0, ω). For this we show that the funnel F is positively
invariant for e by showing that the following implications hold
for all t ∈ [0, ω):

e(t) = ϕ+(t) ⇒ u(t) = U−,

e(t) = ϕ−(t) ⇒ u(t) = U+

and

e(t) = ϕ+(t) ⇒ ė(t) < ϕ̇+(t),
e(t) = ϕ−(t) ⇒ ė(t) > ϕ̇−(t).

The first two implications follow directly from the switching
logic (5). The last two implications follow from

ė(t) = f(yref +e(t), z(t))+g(yref +e(t), z(t))u(t)− ẏref (10)

together with u(t) = U± and the corresponding feasibility
assumption.

Since the error e evolves within the (bounded) funnel, finite
escape time for y is not possible and hence, by the assumption

on the zero dynamics, also z cannot escape in finite time. In
particular y and z are bounded on [0, ω). Hence ω < ∞ can
only occur if the switching times accumulate for t→ ω.

Seeking a contradiction assume ω < ∞. Then there exist
increasing sequences (sn)n∈N and (tn)n∈N with sn < tn <
sn+1 for all n ∈ N and sn → ω (hence also tn → ω) such that
q[sn,tn) = true and q[tn,sn+1) = false. By the definition
of the switching logic it follows that e(sn) = ϕ+(sn) and
e(tn) = ϕ−(tn). By compactness of [0, ω] and continuity of
ϕ± it follows that λ := mint∈[0,ω] ϕ+(t)−maxt∈[0,ω] ϕ−(t) >
0, hence e(sn) − e(tn) > λ for all n ∈ N. Invoking the
Mean Value Theorem, choose a sequence (τn)n∈N in [0, ω)
with ė(τn) = e(tn)−e(sn)

tn−sn
< − λ

tn−sn
→ −∞ as n→∞. This

unboundedness of ė contradicts the observation that (10) for
bounded y, z, u and yref yields a bounded ė on [0, ω). Hence
ω =∞ is shown.

Finally, the boundedness assumption for f , g and ẏref
together with (10) implies that ė is (globally) bounded. Hence
Lemma 2.2 shows the last assertion of the theorem.

Example 2.6: We consider a model of exothermic chemical
reactions which was used in [7] to study the funnel control
with input saturation. In the notation of the present paper the
model with one reactant and one product reads as

ẏ = br(z1, z2, y)− qy + u, y(0) = y0 > 0,

ż1 = c1r(z1, z2, y) + d(zin
1 − z1), z1(0) = z0

1 ≥ 0,

ż2 = c2r(z1, z2, y) + d(zin
2 − z2), z2(0) = z0

2 ≥ 0,

where b ≥ 0, q > 0, c1 < 0, c2 ∈ R, d > 0, zin
1/2 ≥ 0 and r :

R≥0×R≥0×R>0 → R≥0 is assumed to be locally Lipschitz
continuous with r(0, T ) = 0 for all T > 0. The reference
signal is yref(t) = y∗ > 0 for all t ≥ 0. In [7] the input
is saturated to some interval [U−, U+] with U− < U+, i.e.
u(t) ∈ [U−, U+] for all t ≥ 0, and the feasibility assumption
in [7] is that there exists γ ∈ R2

>0 with (c1, c2)γ ≤ 0 and

∃ρ−, ρ+ > 0 ∃y > y∗ ∀y ∈ [y∗, y] ∀z1, z2 ∈ Z0 :
0 < U− + ρ− < qy − br(z1, z2, y) < U+ − ρ+.

where Z0 :=
{

(z1, z2) ∈ R2
≥0

∣∣ (z1, z2)γ < (zin
1 , z

in
2 )γ

}
. It

can be shown that Z0 is positively invariant for every y : R→
R>0. Hence, in the notation of Theorem 2.4, Zt ⊆ Z0 for all
t ≥ 0 if (z0

1 , z
0
2) ∈ Z0. Now [7, Rem. 2] shows that for every

funnel F whose funnel boundaries ϕ± fulfill

ϕ+(t) ∈ (0, y − y∗], ϕ−(t) ∈ (−y∗, 0),
ϕ̇+(t) > −ρ−, ϕ̇−(t) < ρ+,

the feasibility assumption (8) holds. A simulation of the bang-
bang controller applied to the above model with parameters
as given in [7, Sec. 3.3] is shown in Figure 4.

III. RELATIVE DEGREE TWO CASE

Definition 3.1 (Relative degree two): The system (1) is
said to have (global) relative degree two (with positive gain)
when there exist locally Lipschitz continuous functions f :
R × R × Rn−2 → R, h : R × R × Rn−2 → Rn−2,
continuous g : R × R × Rn−2 → R>0 and a diffeomorphism
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Fig. 4. The bang-bang funnel controller applied to an exothermic reactor
model.

Φ : Rn → R × R × Rn−2, x 7→ (y, ẏ, z) which equivalently
transforms (1) to

ÿ = f(y, ẏ, z) + g(y, ẏ, z)u y(0) = y0, ẏ(0) = ẏ0, (11a)

ż = h(y, ẏ, z) z(0) = z0, (11b)

where (y0, ẏ0, z0) = Φ(x0).
The switching logic for the relative degree two case requires

a second funnel for ė given by

Fd :=
{

(t, ė) ∈ R≥0 × R
∣∣ ϕd−(t) ≤ ė ≤ ϕd+(t)

}
, (12)

where ϕd−(t) < 0 < ϕd+(t) for all t ≥ 0. The idea to
use a derivative funnel originates from the recent work [10].
This funnel might reflect real physical bounds for ė or might
be used as a design parameter for the controller. Anyway,
the derivative funnel Fd cannot restrict ė in such a way
that e cannot decrease or increase fast enough to follow the
boundaries of the original funnel F ; in fact it must hold that

∀t ≥ 0 : ϕd+(t) > ϕ̇−(t) and ϕd−(t) < ϕ̇+(t), (13)

where we assumed that the funnel boundary functions ϕ± :
R≥0 → R are absolutely continuous with right-continuous
derivatives. In addition to the derivative funnel a “safety
distance” ε± > 0 from the corresponding funnel boundary
ϕ± is needed to prevent the error e from leaving the funnel
F . This distance will play an essential role in the feasibility
assumptions later; at this point we already make the following
assumption:

∀t ≥ 0 : ϕ+(t)− ε+ > 0 and ϕ−(t) + ε− < 0. (14)

The switching logic is now given by q0(0−) = [e(0) ≥ 0],
q(0−) = q0(0−) and

q0(t) = S
(
e(t), ϕ+(t)− ε+, ϕ−(t) + ε−, q0(t−)

)
q(t) =

{
S
(
ė(t),min{ϕ̇+(t), 0}, ϕd−(t), q(t−)

)
, if q0(t),

S
(
ė(t), ϕd+(t),max{ϕ̇−(t), 0}, q(t−)

)
, else,

(15)

where S is the switching predicate as given in (6). The
switching logic (applied to the control law (3)) is illustrated
as a simplified state diagram in Figure 5.

U− U+

ė(t) ≤ ϕd
−(t)

ė(t) ≥ min{ϕ̇+(t), 0}

q0 =true

decrease e

U+ U−

ė(t) ≥ ϕd
+(t)

ė(t) ≤ max{ϕ̇−(t), 0}

q0 =false

increase e

e(t) ≤ ϕ−(t) + ε− e(t) ≥ ϕ+(t)− ε+

Fig. 5. The switching logic for the relative degree two case.

The reasoning behind the switching logic (15) is as follows
(see also the schematic illustration in Figure 6): Whenever
the error gets close to the upper funnel boundary, i.e. e(t) ≥
ϕ+(t) − ε+, we would like to decrease e(t), a task which is
encoded by q0(t) = true. To do this we have to decrease
ė which under certain feasibility assumptions is possible by
applying u(t) = U−. It will take some time until ė is small
enough, which is the case when ė(t) ≤ ϕ̇+(t) because then the
distance to the upper funnel boundary starts increasing. At this
point we could keep u(t) = U− until the error gets close to
the lower funnel boundary. However, this would unnecessarily
decrease ė(t) further, which implies that when we want to
increase the error later (when we got close the lower funnel
boundary) it will take longer until ė(t) is big enough so that
the distance of e(t) to the lower funnel boundary is increasing.
That is why we stop decreasing ė by setting u(t) = U+ when
the lower derivative funnel boundary is hit, i.e. when ė(t) ≤
ϕd−(t). If we still want to decrease the error, we have to stop
increasing the derivative of the error when ė(t) ≥ ϕ̇+(t) or
ė(t) ≥ 0.

A similar result as Lemma 2.2 holds also for the relative
degree two case.

Lemma 3.2 (Well-defined causal switching logic): For ev-
ery continuously differentiable error function e : [0, T ) → R,
0 < T ≤ ∞ there exists a unique causal right-continuous
switching signal q : [0, T ) → {true, false} fulfilling (15).
If additionally ė is bounded and absolutely continuous with
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ϕ+(t)

ϕ−(t)
F

q0 =true

decrease e
q0 =false

increase e
q0 =true

decrease eė(t)

t

ϕd+(t)

ϕd−(t)

ϕ̇−(t)

ϕ̇+(t)

Fd

Fig. 6. A schematic illustration how the error and its derivative evolve
under the switching logic (15), the vertical lines indicate the switching of the
predicate q0 which indicates wether we would like to decrease or increase
the error.

right-continuous bounded derivative ë and, for δ := ‖ë‖,

0 < λ := inf
t≥0

ϕ+(t)− ε+ − sup
t≥0

ϕ−(t)− ε−,

0 < τ+(δ) :=

inf
t≥0

inf
{
|τ |
∣∣ ϕd+(t)−max{ϕ̇−(t+ τ), 0} ≤ τδ

}
0 < τ−(δ) :=

inf
t≥0

inf
{
|τ |
∣∣ min{ϕ̇+(t), 0}−ϕd−(t+ τ) ≤ τδ

}
(16)

then the switching signal has an average dwell time [14]

τa ≥
1

‖ė‖
λ + min{τ+(‖ë‖), τ−(‖ë‖)}

with chattering bound two, i.e. the number of switches N(t, T )
in every time interval [t, T ) is bounded by 2 + T−t

τa
.

Proof: Identically to Lemma 2.2 it follows that the map
e 7→ q0 is well defined and q0 is right-continuous, i.e. there
exists a family of disjoint intervals [sn, sn+1), n ∈ N, whose
union is the whole interval [0, T ). Similar ideas as in Lemma
2.2 applied to each interval [sn, sn+1) yields that also ė 7→ q
is well defined and causal for a given initial value q(sn−).
Hence the overall mapping e 7→ q is well defined and causal
and q is right-continuous.

With the given properties it follows easily that q0 has a dwell
time τ0 ≥ λ/‖ė‖ and on each interval where q0 is constant,
the dwell time of q is at least either τ+ := τ+(‖ë‖) or τ− :=
τ−(‖ë‖). Hence in any interval [t, T ) there can be at most
2 + (T − t)/τ0 + (T − t)/min{τ+, τ−} switches in q which
yields that the switching signal q has an average dwell time
of at least 1/(1/τ0 + 1/min{τ+, τ−}).

Corollary 3.3 (Closed loop well posed): Consider system
(1) with relative degree two in closed loop with the bang-bang
controller given by (15) and (3) where e := y − yref for some
continuously differentiable reference signal yref : R≥0 → R.
Then for every initial value x0 ∈ Rn there exists a unique
maximal solution (x, q0, q) : [0, ω)→ Rn×{true, false}×
{true, false}, 0 < ω ≤ ∞.

Proof: The relative degree two assumption ensures that
the output y is continuously differentiable (for any locally
integrable input u), hence e is also continuously differentiable
and Lemma 3.2 together with Lemma A.1 ensure existence
and uniqueness of solutions in the closed loop.

As in the relative degree one case, Corollary 3.3 does not
assume or claim that the error evolves within the funnel. For
this some additional feasibility assumptions are needed.

Theorem 3.4 (Relative degree two case main result):
Assume that (1) has relative degree two, i.e. (1) is equivalent
to (11). Consider a funnel F as given by (2) whose
differentiable boundary functions ϕ± : R≥0 → R have
absolutely continuous derivatives with right-continuous
second derivatives and fulfill (14) for some ε± > 0.
Choose a derivative funnel Fd as in (12) whose funnel
boundaries ϕd± : R≥0 → R are absolutely continuous with
right-continuous derivative and fulfill assumption (13). Let
yref : R≥0 → R be a differentiable reference signal whose
derivative is absolutely continuous with right-continuous
second derivative. Assume that the initial conditions for (11)
fulfill

y0 − yref(0) ∈ [ϕ−(0) + ε−, ϕ+(0)− ε+],

ẏ0 − ẏref(0) ∈ [ϕd−(0), ϕd+(0)], z0 ∈ Z0 ⊆ Rn−2

and assume that for every differentiable y : [0,∞)→ R with
ϕ−(t) ≤ y(t) − yref(t) ≤ ϕ+(t), ϕd−(t) ≤ ẏ(t) − ẏref(t) ≤
ϕd+(t) and for every initial value z0 ∈ Z0 there exists a unique
(global) solution z : R≥0 → Rn−2 of the zero dynamics (11b);
for t > 0 let

Zt :=


z(t)

∣∣∣∣∣∣∣∣∣∣∣∣

z : [0, t]→ Rn−1 solves (11b) for some

z0 ∈ Z0 and for some y : [0, t]→R with
ϕ−(τ) ≤ y(τ)− yref(τ) ≤ ϕ+(τ) and

ϕd−(τ) ≤ ẏ(τ)− ẏref(τ) ≤ ϕd+(τ)
∀τ ∈ [0, t]


.

If there exist δ± > 0 with

δ+ > max{ϕ̇d−(t), ϕ̈−(t), 0} and

−δ− < min{ϕ̇d+(t), ϕ̈+(t), 0} ∀t ≥ 0



such that the first set of feasibility conditions

U− <
−δ− + ÿref(t) + f(yt, ẏt, zt)

g(yt, ẏt, zt)
,

U+ >
δ+ + ÿref(t) + f(yt, ẏt, zt)

g(yt, ẏt, zt)
,

(17)

hold for all t ≥ 0 and all (yt, ẏt, zt) ∈ [yref(t)+ϕ−(t), yref(t)+
ϕ+(t)]×[ẏref(t)+ϕd−(t), ẏref(t)+ϕd+(t)]×Zt, and if the second
set of feasibility conditions

ε+ ≥
(‖ϕd−‖+ ‖min{ϕ̇+, 0}‖)2

2δ−

ε− ≥
(‖ϕd+‖+ ‖max{ϕ̇−, 0}‖)2

2δ+

(18)

hold then the bang-bang controller (3) governed by the switch-
ing logic (15) applied to (1) or, equivalently, (11) achieves
the control objectives, i.e. the closed loop has the following
properties:

1) There exists a (global) unique solution (x, q0, q) :
R≥0 → Rn × {true, false} × {true, false}.

2) The error e := y− yref evolves within the funnel F and
the derivative of the error ė evolves within the derivative
funnel Fd, i.e. (t, e(t)) ∈ F and (t, ė(t)) ∈ Fd for all
t ≥ 0.

3) If f and g are uniformly bounded on
⋃
t≥0[yref(t) −

ϕi(t), yref(t) + ϕ+]× [ẏref + ϕd−, ẏref + ϕd+]×Zt, ÿref is
bounded, ϕd± are bounded and (16) holds for all δ > 0
then the switching signal q has a positive average dwell
time τa > 0.

Proof: Existence and uniqueness of a maximal solution
(x, q0, q) : [0, ω) → Rn × {true, false}2 for 0 < ω ≤ ∞
follows from Corollary 3.3.

If e(t) leaves the funnel F then let ω1 > 0 be the first time
the error crosses the funnel boundary, otherwise let ω1 = ω.
Step 1: We show that ė evolves within Fd on [0, ω1).
The switching logic ensures, for all t ∈ [0, ω1),

ė(t) = ϕd+(t) ⇒ u(t) = U− and

ė(t) = ϕd−(t) ⇒ u(t) = U+

and the first feasibility assumption (17) together with

ë(t) = f(yref(t) + e(t), ẏref(t) + ė(t), z(t))
+ g(yref(t) + e(t), ẏref(t) + ė(t), z(t))u(t)− ÿref(t) (19)

yields

ė(t) = ϕd+(t) ⇒ ë(t) < −δ− < ϕ̇d+(t) and

ė(t) = ϕd−(t) ⇒ ë(t) > δ+ > ϕ̇d−(t)

for all t ∈ [0, ω1), hence the derivative funnel Fd is positively
invariant for ė on the interval [0, ω1).
Step 2: We show that ω1 = ω.
Let t0 ∈ [0, ω1) be such that e(t0) = ϕ+(t0) − ε+. The
switching logic ensures q0(t) = true for all t ∈ [t0, t1) where
t1 > t0 is the smallest time when e(t1) = ϕ−(t1) + ε−
or t1 = ω1. Choose a maximal s0 ∈ [t0, t1] such that

q(t) = true for all t ∈ [t0, s0), i.e. u(t) = U− for all
t ∈ [t0, s0). From the first feasibility assumption (17) and
(19) it follows that ë(t) < −δ−. Hence, for all t ∈ [t0, s0),

e(t) < e(t0) + ė(t0)(t− t0)− 1
2δ−(t− t0)2

≤ ϕ+(t0)− ε+ + ‖ϕd+‖(t− t0)− 1
2δ−(t− t0)2

= ϕ+(t0)− ‖min{ϕ̇+, 0}‖(t− t0)− ε+
+ (‖ϕd+‖+ ‖min{ϕ̇+, 0}‖)(t− t0)− 1

2δ−(t− t0)2
(18)
≤ ϕ+(t0)− ‖min{ϕ̇+, 0}‖(t− t0)

≤ ϕ+(t).

As long as q0(t) = true the switching logic ensures that
the set

{
(t, ė)

∣∣ ϕd−(t) ≤ ė ≤ min{ϕ̇+(t), 0}
}

is positively
invariant and ė(s0) = ϕd−(s0) if s0 < t1. Therefore, ė(t) ≤
ϕ̇+(t) for all t ∈ [s0, t1). Altogether this yields e(t) < ϕ+(t)
for all t ∈ [t0, t1).

For t1 ∈ [0, ω1) with e(t1) = ϕ−(t1) + ε− an analogous
argument shows e(t) > ϕ−(t) for all t ∈ [t1, t2) where t2 > t1
is the smallest time when e(t2) = ϕ+(t2) − ε+ or t2 = ω1.
Hence an inductive argument yields that the error cannot leave
the funnel and ω1 = ω.
Step 3: We show ω =∞.
Since e and ė evolve within the funnel, finite escape time for y
and ẏ is not possible. By the property of the zero dynamics this
also precludes finite escape time for z. In particular y, ẏ, z are
bounded on [0, ω), therefore ω <∞ is only possible when the
switching times accumulate for t→ ω. A similar idea as in the
proof of Theorem 2.4 yields that this accumulation contradicts
boundedness of ė and ë on the compact interval [0, ω], hence
ω =∞.
Step 4: The average dwell time condition is shown.
The boundedness assumption on f, g and ÿref together with
(19) ensures that ë is bounded. Since ė evolves within the
bounded funnel Fd it is also bounded, hence Lemma 2.2 yields
the average-dwell time property.

Remarks 3.5: 1) The two main results, Theorem 2.4
and Theorem 3.4, do not depend on the initialization
q(0−) and q0(0−) for the switching logic. However, the
choice in (5) and (15) intuitively improves performance,
because the control action is in the “right” direction just
from the start and not only after the first boundary is
hit.

2) The second feasibility assumption (18) might be in con-
tradiction with the assumption (14). However, increas-
ing/decreasing U± (without changing anything else)
allows for bigger δ± so that (18) yields arbitrarily small
lower bounds for ε± and (14) is not in contradiction
with (18) anymore.

3) As for the relative degree one case it is possible to
simplify the feasibility assumption (17) by considering
upper bounds for the funnel boundaries (and their deriva-
tives), the zero dynamics, and the reference signal (and
its derivatives). In particular, for minimum phase linear
systems with relative degree two it follows then that (17)
holds whenever U− < 0 and U+ > 0 are large enough.



4) The feasibility assumptions could possibly be made
less conservative by introducing time-varying safety dis-
tances ε±(t). Typically the funnels are large with large
derivatives at the beginning, hence require larger safety
distances by (18), and on the other hand tighter funnels
with small derivatives later in time restrict the size of
the safety distance by (14) although, at least locally, (18)
does not require big safety distances anymore.

5) The first feasibility assumption (17) looks very similar
to the feasibility assumption in Theorem 2.4 applied to
ė and Fd. The two main differences are that, firstly, ϕ̇d±
are replaced by uniform lower/upper bounds δ∓ and,
secondly, (17) has to hold on the whole funnel region
and not only on the boundary. The reason for both is
that we need a certain minimum decrease/increase of ė
in the whole funnel (and not only on the boundary) to
ensure that we can quantify the overshoot of e (in fact,
condition (18) is this quantification).

6) The switching logic for the relative degree two case
is hierarchically composed, where the outer switching
logic is identical (apart from the safety distance) to the
switching logic of the relative degree one case. The
authors were already able to define a switching logic
for the relative degree three case based on a hierarchical
composition similar to the one presented here, but due
to space limitations this result is not included here. In
fact, it seems much more interesting to come up with a
general solution for an arbitrary relative degree; this is
ongoing research.

IV. CONCLUSIONS

A universal controller was proposed which only uses two
input values and is governed by a simple switching logic. This
switching logic depends on the relative degree of the system,
otherwise no knowledge of the system is necessary to design
the controller. Feasibility assumptions are given which ensure
that approximate reference signal tracking with strict time-
varying error bounds is achieved. We assumed that the gain
function g in the relative degree normal forms is positive;
however, it should be possible to extend the results to an
unknown (but definite) sign of the gain function by slightly
changing the switching logic to first detect the sign of the gain
function.

The nature of the controller seems to make it more “robust”
than the continuous funnel controller because, in contrast to
the latter, the bang-bang funnel controller is still well defined
when the error leaves the funnel, for example when a time
delay is present. A precise robustness result is a future research
topic.

The switching logic for the relative degree two case already
hints to switching logics for higher relative degrees; this is a
topic of ongoing research.
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APPENDIX

The closed loop as illustrated in Figure 2 leads to a
switched system with state dependent switching and it is well
known that local existence of (Carathéodory) solutions is not
guaranteed in general. Consider for example the following
closed loop

ẏ(t) = u(t), y(0) = y0 ∈ R,
q(t) = [e(t) ≥ 0], ∀t ≥ 0, and (3)

with U− = −1, U+ = 1 and yref ≡ 0. It is easy to see
that this closed loop does not have a differentiable solution
for the initial value y(0) = 0. Hence not all switching logics
are suitable. It turns out that the underlying problem of this
example is that for a given continuous function e the switching
signal is in general not right-continuous. The next result shows
that right-continuity of the switching signal is sufficient for
existence of local solutions of the closed loop.

Lemma A.1 (Well posedness of closed loop): Consider
system (1) with the controller (3) governed by some switching
law q which is generated by some causal switching logic
L : y 7→ q (here we include the reference signal yref into the
switching logic). Let Y ⊆ { y : [0, ω)→ R | 0 < ω ≤ ∞ }
be a function space which contains all possible outputs of (1)
for arbitrary locally integrable inputs (we do not exclude finite
escape time at this point). If for every y ∈ Y the resulting
switching signal q is right-continuous then the closed loop
as illustrated in Figure 2 is well posed, i.e. for every initial
value x0 ∈ Rn there exists a maximally extended solution
(x, q) : [0, ω)→ Rn × {true, false}, 0 < ω ≤ ∞.

Proof: The initial value of (1) yields the value y(0) and
causality of the switching logic yields a unique value for q(0).
Let x : [0, ω) be the unique local solution of the differential
equation (1) with the constant input u(t) = u(0) for all t ≥ 0.
This results in an (open loop) output y : [0, ω)→ R contained
in Y . The corresponding (open loop) switching signal q is
right-continuous and there exists a maximal ω1 ∈ (0, ω] such
that q(t) = q(0) for all t ∈ [0, ω1). Hence (x, q) is also a
solution of the closed loop on [0, ω1). If ω1 = ω then the
solution is maximal and cannot be extended and we are done.
Therefore assume ω1 < ω. We can now inductively repeat the
argument with the new initial value x(ω1) and q(ω1).
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