
Switched nonlinear differential algebraic equations: Solution theory, Lyapunov
functions, and stabilityI

Daniel Liberzona, Stephan Trennb,∗

aCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
bInstitute of Mathematics, University of Würzburg, Würzburg, Germany

Abstract

We study switched nonlinear differential algebraic equations (DAEs) with respect to existence and nature of solutions
as well as stability. We utilize piecewise-smooth distributions introduced in earlier work for linear switched DAEs to
establish a solution framework for switched nonlinear DAEs. In particular, we allow induced jumps in the solutions. To
study stability, we first generalize Lyapunov’s direct method to non-switched DAEs and afterwards obtain Lyapunov
criteria for asymptotic stability of switched DAEs. Developing appropriate generalizations of the concepts of a common
Lyapunov function and multiple Lyapunov functions for DAEs, we derive sufficient conditions for asymptotic stability
under arbitrary switching and under sufficiently slow average dwell-time switching, respectively.
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1. Introduction

We consider switched nonlinear differential algebraic
equations (DAEs) of the form

Eσ(t)(x(t))ẋ(t) = fσ(t)(x(t)), (1)

where σ : R → {1, . . . , p}, p ∈ N, is the switching signal
and Ep : Rn → Rn×n, fp : Rn → Rn, p ∈ {1, . . . , p},
are smooth functions. In particular, we assume that each
subsystem is a DAE in quasi-linear form (Reich, 1990)

E(x)ẋ = f(x). (2)

Equations of this kind occur for example when modeling
(nonlinear) electrical circuits (Chua and Rohrer, 1965) or
coupled mechanical systems (Schiehlen, 1990). Classical
linear DAEs (i.e. without switching) of the form Eẋ = Ax,
with matrices E,A ∈ Rn×n, which are also known as singu-
lar systems or descriptor systems, naturally appear when
modeling electrical circuits because Kirchhoff’s circuit laws
add algebraic equations to the differential equations stem-
ming from capacitors and inductances. For more details
and further motivation for studying (non-switched) DAEs
the reader is referred to Kunkel and Mehrmann (2006).
Adding, for example, (ideal) switches to an electrical cir-
cuit or allowing for sudden structural changes in mechan-
ical systems yield a switched DAE as in (1). When study-
ing the zero dynamics of an ordinary differential equation
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(ODE) one arrives at a DAE because of the additional al-
gebraic constraint 0 = y = h(x), where h : Rn → Rm is
the output function. In particular, using a switched con-
troller to stabilize the zero dynamics (as was done in Nešić
et al., 1999) yields a switched DAE (1) even if one starts
with an ODE.

The switching signal in (1) is time-dependent and not
state-dependent. Although state-dependent switching has
high relevance for applications, we focus our attention in
this paper only on time-dependent switching. Some rea-
sons for this are the following: 1) We view the switching
signal as an exogenous signal, which is a natural approach
for studying electrical circuits with (physical) switches or
sudden component faults in electrical and mechanical sys-
tems, 2) The distributional solution framework utilized in
this paper does not allow for accumulation of switching
times (Zeno behavior) which in general can occur for state-
dependent switching.

The aim of this paper is a stability analysis of (1) with
the help of Lyapunov functions. For this we first need
to establish a Lyapunov theory for non-switched DAEs
in quasi-linear form (2) and secondly we need to define a
suitable solution framework for the switched DAE (1).

The use of Lyapunov functions is a powerful tool to
study stability of nonlinear differential equations. How-
ever, it is not immediately clear how Lyapunov functions
can be defined for implicit differential equation such as (2).
Of course, it is possible to define a Lyapunov function in a
very general setting just by the property that it decreases
along solutions; but we believe that only a definition for a
Lyapunov function which does not refer to the individual
solutions makes Lyapunov functions so useful. The main
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problem is that, given a function x 7→ V (x), its derivative
along solutions V̇ (x) = ∇V (x)ẋ can not be expressed di-
rectly in terms of the right-hand side f(x), because ẋ is
not explicitly given. We resolve this problem and general-
ize the well known Lyapunov’s Direct Method to implicit
differential equations of the form (2). In the linear case
Eẋ = Ax there have been generalizations of Lyapunov’s
Direct Method (e.g. in Owens and Debeljkovic, 1985; Tak-
aba et al., 1995) but no general definition of a Lyapunov
function was given.

One major problem of studying switched DAEs of the
form (1) is the presence of jumps in the solutions induced
by the presence of so-called consistency spaces. A special
case is the problem of inconsistent initial values which has
been studied extensively (see e.g. Verghese et al., 1981;
Cobb, 1982; Liu et al., 1995; Frasca et al., 2010) and the
references in the latter. We are using the piecewise-smooth
distributional framework from (Trenn, 2009a,b) to define
solutions of the switched DAE (1). In this framework ẋ is
well defined even when x contains jumps, in which case ẋ
contains Dirac impulses. It should be noted that a general
distributional solution framework (i.e. not considering the
smaller space of piecewise-smooth distributions) will not
work, because 1) the nonlinear function evaluations E(x)
and f(x) are not defined for distributions and 2) the prod-
uct E(x)ẋ is not defined even when E(x) is a piecewise-
smooth function.

All results presented here apply of course also to the
linear switched DAE

Eσẋ = Aσx, (3)

where Ep, Ap ∈ Rn×n for p ∈ {1, . . . , p}. In this case
some of the results simplify significantly and we will for-
mulate corollaries to highlight the linear case. We have
studied stability of the linear switched DAE (3) already
in Liberzon and Trenn (2009). However, our nonlinear re-
sults presented here applied to the linear switched DAE
(3) still generalize these results. In particular, the notion
of a Lyapunov function as well as the dwell-time stability
results are significantly generalized.

Although the two research fields ‘DAEs’ and ‘switched
systems’ are now relatively mature (see e.g. the textbooks
Kunkel and Mehrmann, 2006; Liberzon, 2003) the combi-
nation of both has not been studied much even in the linear
case. The existing literature available on switched DAEs
(Geerts and Schumacher, 1996a,b; Meng, 2006; Meng and
Zhang, 2006; Wunderlich, 2008; Zhai et al., 2006; Raouf
and Michalska, 2010) does not consider stability problems
in a nonlinear setup. Furthermore, the fundamental prob-
lem that one needs distributional solutions for a switched
linear DAE (3) and at the same time the equation (3) can-
not be evaluated for distributional x is not resolved there.

It might be possible to reformulate the switched DAE
(1) as a hybrid system in the framework of (Goebel et al.,
2009) by writing (1) as ẋ ∈ Eσ(x)−1

(
fσ(x)

)
; however, by

doing so, we lose the special structure of (1). In particular,

the jumps of the states are implicitly given by (1) and
no additional jump map needs to be considered. This is
a major difference between switched DAEs and switched
ODEs with reset maps.

A system class which has similarities with switched
DAEs (1) is that of complementarity systems (see e.g.
van der Schaft and Schumacher, 1996; Heemels et al., 2000;
Çamlıbel et al., 2003; Acary et al., 2008). The main sim-
ilarity is the existence of different modes which are de-
scribed by differential-algebraic equations. Roughly speak-
ing, the different modes in the complementarity framework
stem directly from the complementarity condition (certain
variables must be zero) and a mode change is triggered
by violation of positivity of certain variables. In partic-
ular, the switches between the different modes are state-
dependent; hence the solution theory is rather different.
Another difference of the complementarity framework is
the existence of two different types of variables: the state
variable (whose derivative appears explicitly in the system
description) and complementarity variables which have to
fulfill the complementarity conditions. This distinction is
not made in our approach: In one mode a certain state-
variable could be governed by a differential equation, in
another mode this variable could be governed by a sim-
ple algebraic equation. A further comparison of the linear
switched DAE (3) with the linear complementarity frame-
work from Heemels et al. (2000) reveals that the consis-
tency projectors are (modulo a restriction to the state vari-
able) identical in both frameworks but the different modes
in Heemels et al. (2000) have the same E-matrix which
simplifies the analysis significantly.

The structure of the paper is as follows. In Section 2
we study the non-switched DAE (2) and generalize Lya-
punov’s Direct Method to the DAE case in Theorem 2.7.
This result is based on a presumably new definition of a
Lyapunov function for the DAE (2) as formulated in Def-
inition 2.5. In Section 3 the distributional solution frame-
work for switched DAEs of the form (1) is introduced. We
formulate Assumption A4 which under certain regularity
assumptions on the subsystems guarantees existence and
uniqueness of solutions of the switched DAE (1), see The-
orem 3.3. In Section 3.2 we consider the linear case and
observe with Corollary 3.9 that the linear equivalent of
Assumption A4 ensures the existence of impulse-free so-
lutions of the linear switched DAE (3). Finally, in Section
4 we generalize the well-known results that the existence
of a “common Lyapunov function” implies asymptotic sta-
bility under arbitrary switching; the novel element is that
this Lyapunov function must take into account the consis-
tency projectors as formulated in Theorem 4.1. We also
prove a result on stability under average dwell time in the
spirit of Hespanha and Morse (1999) for switched nonlin-
ear DAEs (1) in Theorem 4.2.

The following notation is used throughout the paper.
N,Z,R,C are the natural numbers, integers, real and com-
plex numbers, respectively. For a matrix M ∈ Rn×m,
n,m ∈ N, the kernel (null space) of M is kerM , the im-
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age (range, column space) of M is imM , and the trans-
pose of M is M> ∈ Rm×n. For a matrix M ∈ Rn×n
and a set S ⊂ Rn, the image of S under M is MS :=
{ Mx ∈ Rn | x ∈ S } and the pre-image of S under M
is M−1S := { x ∈ Rn | ∃y ∈ S : Mx = y }. The identity
matrix is denoted by I. For a piecewise-continuous func-
tion f : R→ R the left-sided evaluation limε↘0 f(t− ε) at
t ∈ R is denoted by f(t−). The space of differentiable func-
tions f : R → R is denoted by C1, the space of piecewise-
smooth functions is denoted by C∞pw, the space of distri-
butions is denoted by D, the space of piecewise-smooth
distributions is denoted by DpwC∞ and δt ∈ DpwC∞ ⊆ D
denotes the Dirac impulse at t ∈ R; for details see the
Appendix. The set of switching signals considered here is

Σ :=

{
σ : R→ {1, . . . , p}

∣∣∣∣ σ is right continuous with a

locally finite number of jumps

}
where p ∈ N is the number of subsystems.

2. Non-switched DAEs and Lyapunov functions

2.1. Classical solutions and consistency spaces

Consider for now the (non-switched) nonlinear DAE
(2). A (classical, local) solution of (2) is any differentiable
function x : I → Rn which fulfills (2) on some interval
I ⊆ R. Due to the time-invariant nature of (2) we can
always assume that I = [0, T ) for some T ∈ (0,∞].

Definition 2.1 (Consistency space). The consistency
space of (2) is given by

CE,f :=

{
x0 ∈ Rn

∣∣∣∣ ∃ solution x : [0, T )→ Rn

with x(0) = x0

}
.

Each x0 ∈ CE,f is called a consistent initial value.

Time-invariance of (2) implies that all solutions x of
(2) evolve within CE,f , i.e. x(t) ∈ CE,f for all t ∈ [0, T ).
In general, it is not easy to characterize the solution be-
havior of (2) (for details see e.g. Reich, 1990; Rabier and
Rheinboldt, 1994; Schlacher and Zehetleitner, 2004). Here
we just assume that the solution behavior is not drastically
different from the regular linear case:

Assumption. The nonlinear DAE (2) satisfies:

A1 f(0) = 0, in particular 0 ∈ CE,f ,

A2 CE,f is a closed manifold (possibly with boundary)
in Rn.

A3 For each x0 ∈ CE,f there exists a unique solution
x : [0,∞)→ Rn with x(0) = x0 and x ∈ (C1∩C∞pw)n.

Remark 2.2 (On A3). First note that we exclude sys-
tems which exhibit finite escape time. Secondly, the as-
sumption that the differentiable solution is also piecewise-
smooth is just a technical assumption which will be needed
later for studying switched DAEs.

For the linear case

Eẋ = Ax (4)

with E,A ∈ Rn×n Assumptions A1 and A2 are fulfilled
trivially (by linearity the consistency space is a linear sub-
space, see also the forthcoming Theorem 2.3), and A3 is
fulfilled if and only if the matrix pair (E,A) is regular,
i.e. the polynomial det(Es − A) ∈ R[s] is not the zero
polynomial (for details see e.g. the textbook Kunkel and
Mehrmann, 2006). Furthermore, regularity of the matrix
pair (E,A) is equivalent to the existence of invertible ma-
trices S, T ∈ Rn×n such that a coordinate transformation
of the codomain and domain by S and T yields the quasi-
Weierstrass form

(SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]) , (5)

where J ∈ Rn1×n1 , n1 ∈ N, is some matrix and N ∈
Rn2×n2 , n2 = n−n1, is nilpotent, i.e. Nn2 = 0. We call (5)
quasi -Weierstrass form (following Berger, Ilchmann, and
Trenn, 2010) because we do not assume that J and N are
in Jordan canonical form as is the case for the Weierstrass
canonical form (Weierstraß, 1868; Gantmacher, 1959). The
smallest number ν ∈ N such that Nν = 0 is called the
index of the corresponding linear DAE Eẋ = Ax. It is not
difficult to see that the consistency space CE,A is spanned
by the first n1 columns of T . A convenient way to calculate
the matrices S and T is the usage of the Wong sequences
of subspaces (named after Wong, 1974)1.

Theorem 2.3 (Armentano (1986)2). Consider a regu-
lar matrix pair (E,A) with index ν and define the associ-
ated Wong sequences by, i ∈ N,

V0 := Rn, Vi+1 := A−1(EVi), V∗ :=
⋂
i

Vi

W0 := {0}, Wi+1 := E−1(AWi), W∗ :=
⋃
i

Wi.

The Wong sequences are nested and get stationary after
exactly ν steps. For any full rank matrices V,W with
imV = V∗ = Vν and imW = W∗ = Wν the matrices
T := [V W ] and S := [EV AW ]−1 are invertible and put
(E,A) into the quasi-Weierstrass form (5). In particular

CE,A = V∗.

Remark 2.4 (Linear index-one case). From the
quasi-Weierstrass form (5) it can be deduced that the (clas-
sical) solutions of (4) do not depend on N , or, in other

1These sequences can be traced back to Dieudonné (1946); how-
ever, he only implicitly considers the second Wong sequence via a
duality argument. Although some authors use these sequences (Aple-
vich, 1991; Kuijper, 1994; van der Schaft and Schumacher, 1996), the
connection between them and the quasi-Weierstrass form, as estab-
lished by Theorem 2.3, seems not to be very well known.

2See also Berger et al. (2010).
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words, the solutions remain the same when N is set to
be the zero matrix. Assuming that N is the zero matrix
is by definition equivalent to assuming that the matrix
pair (E,A) is index-one. The importance of N only shows
up when studying switched DAEs, where a non-zero N
might produce impulses in the solutions (we will study
impulse-free solutions in more detail in Section 3.2). An
easy way to exclude impulsive behaviors is an index-one
assumption for all subsystems, i.e. assuming that in each
quasi-Weierstrass form (5) the nilpotent matrix is the zero
matrix. However this assumption excludes a large class of
interesting switched DAEs. For example, if all subsystems
have the same consistency space, then all solutions of the
corresponding switched systems will have neither jumps
nor impulses, independently of whether or not the subsys-
tems are index-one. In Section 3 we propose Assumption
A4, whose linear equivalent (13) ensures impulse-free so-
lutions and is implied by the above two stricter conditions
(index-one or same consistency spaces).

2.2. Stability and Lyapunov functions

We call the DAE (2) asymptotically stable when all so-
lutions converge to zero as t → ∞ and for every ε > 0
there exists a δ > 0 such that for each consistent initial
value x0 ∈ CE,f with |x0| < δ the corresponding solution
x : [0,∞)→ CE,f fulfills |x(t)| < ε for all t ≥ 0. The only
difference with the classical definition of asymptotic sta-
bility is the restriction to consistent initial values. Later,
in the switched case, we have to reconsider this restriction,
because due to the switching it is not guaranteed that the
initial value at a switching instant is consistent.

Definition 2.5 (Lyapunov function). Consider the
DAE (2) satisfying A1-A3. Any continuously differen-
tiable non-negative function V : CE,f → R≥0 fulfilling the
following properties is called Lyapunov function for (2):

L1 V is positive definite, i.e. V (x) = 0⇔ x = 0, and for
all x ∈ CE,f each sublevel set V −1[0, V (x)] ⊆ CE,f
is bounded (hence compact by A2),

L2 there exists a continuous F : Rn×Rn → R such that
∇V (x)z = F (x,E(x)z) for all x ∈ CE,f , z ∈ TxCE,f ,
where TxCE,f is the tangent space of CE,f at x,

L3 defining V̇ (x) := F
(
x, f(x)

)
we have V̇ (x) < 0 for

all x ∈ CE,f\{0}.

Note that in the linear case (4) the tangent space TxCE,A
is identical to the consistency space CE,A for all x ∈ CE,A,
hence L2 simplifies in this case. Furthermore, for any
non-trivial solution x of (2) with a Lyapunov function V
it holds that

d
dtV (x(t)) = ∇V

(
x(t)

)
ẋ(t)

L2
= F

(
x(t), E(x(t))ẋ(t)

)
= F

(
x(t), f(x(t)

)
= V̇

(
x(t)

) L3
< 0, (6)

hence V is decreasing along solutions.

Remark 2.6 (Weaker version of L2). In L2 one
could also work with ∇V (x)z ≤ F (x,E(x)z) instead of
∇V (x)z = F (x,E(x)z). However, the definition in L3
for V̇ would then be misleading, because F (x, f(x)) would
only be an upper bound of V̇ . In order to keep the spirit
of the classical concept of a Lyapunov function we chose
to use L2 but all results here hold true also for the weaker
version. Furthermore, L2 could be formulated with z ∈
E(x)−1(f(x)) instead of z ∈ TxCE,f because z is a place-
holder for ẋ when applied later and therefore all relevant
z must be solutions of E(x)z = f(x). Depending on the
specific problem it might be easier or more difficult to char-
acterize E(x)−1(f(x)) instead of TxCE,f .

Theorem 2.7 (Lyapunov’s direct method).
Consider the DAE (2) satisfying A1-A3. If there exists
a Lyapunov function for (2) then (2) is (globally) asymp-
totically stable.

Proof. Stability
For ε > 0 consider the set Bε := { x ∈ CE,f | |x| = ε }
which is empty or compact by Assumption A2. If Bε = ∅
then each solution starting within the set enclosed by Bε
cannot leave this set, hence stability follows in this case.
Otherwise, let b := minx∈Bε V (x) where positive definite-
ness of V implies b > 0. Continuity of V and V (0) = 0
guarantees the existence of δ > 0 such that V (x) < b for
all |x| < δ, in particular δ < ε. From (6) it follows that
t 7→ V

(
x(t)

)
is decreasing for any solution x of (2), hence

any solution x with |x(0)| < δ fulfills V (x(t)) < b for all
t ≥ 0. Seeking a contradiction, assume there exists t > 0
such that |x(t)| ≥ ε, then, by continuity of x together with
|x(0)| < δ < ε, there exists t1 ∈ (0, t) such that |x(t1)| = ε
which leads to b ≤ V (x(t1)) < b.
Convergence to zero
Step 1: V

(
x(t)

)
→ 0 as t→∞.

Let x : [0,∞) → CE,f be any non-trivial solution, then
the non-negative function t 7→ v(t) := V

(
x(t)

)
≥ 0 is

strictly decreasing by (6). Therefore, v = limt→∞ v(t)
is well defined. Seeking a contradiction, assume v > 0.
Then v(t) ∈ [v, v(0)] for all t ≥ 0. By L1 and con-
tinuity of V , K := V −1[v, v(0)] is a compact set, hence
M := V̇ (K) ⊆ R is also compact (since V̇ is continuous)
and 0 /∈ M. This implies that m := −maxM > 0 and,
in particular, v′(t) = d

dtV
(
x(t)

)
= V̇

(
x(t)

)
≤ −m < 0 for

all t ≥ 0. Hence v(t) ≤ v(0) − mt for all t ≥ 0, which
contradicts v(t) ≥ 0 for all t ≥ 0, hence v = 0 must hold.
Step 2: x(t)→ 0 as t→∞.
Seeking a contradiction, assume x(t) 6→ 0, then there exists
a sequence (tn)n∈N with tn →∞ as n→∞ and ε > 0 such
that |x(tn)| > ε. By L1 and (6), each solution x evolves
within the compact set V −1[0, V (x(0))], hence there exists
a convergent subsequence of x(tn) with limit x∗ 6= 0. By
continuity and positive definiteness of V we arrive at the
contradiction 0 = limt→∞ V (x(t)) = V (x∗) > 0. qed

Remark 2.8 (The linear case). In the linear, regular
case it is well-known (Owens and Debeljkovic, 1985) that
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Eẋ = Ax is asymptotically stable if, and only if, there
exists a solution (P,Q) ∈ Rn×n ×Rn×n of the generalized
Lyapunov equation3

A>PE + E>PA = −Q, (7)

where P = P> is positive definite and Q = Q> is posi-
tive definite on CE,A. In fact, it is easy to see that then
V (x) = (Ex)>PEx is a Lyapunov function in the sense of
Definition 2.5 with

∇V (x)z = (Ex)>PEz + (Ez)>PEx =: F (x,Ez)

and

V̇ (x) = x>(E>PA+A>PE)x = −x>Qx < 0 on CE,A.

If the linear system Eẋ = Ax is index-one, i.e. N = 0
in the quasi-Weierstrass form (5), it is shown in (Takaba
et al., 1995; Ishihara and Terra, 2002) that asymptotic
stability is also equivalent to the existence of a solution
P ∈ Rn×n of

P>A+A>P = −Q, P>E = E>P ≥ 0,

for any positive definite Q ∈ Rn×n. The correspond-
ing “asymmetric” Lyapunov function4 is given by V (x) =
(Ex)>Px, with ∇V (x)z = (Ex)>Pz + (Ez)>Px =
x>P>Ez+ (Ez)>Px =: F (x,Ez) and V̇ (x) = x>(P>A+
A>P )x = −x>Qx < 0.

We conclude this section with an example which illus-
trates the application of Theorem 2.7.

Example 2.9. Consider the nonlinear DAE[
sin x3 cos x3 0

0 0 0
0 0 0

]( ẋ1
ẋ2
ẋ3

)
=

(
−x1 sin x3−x2 cos x3
x1 cos x3−x2 sin x3

x3−x2
1−x

2
2

)
, (8)

which fulfills our Assumptions A1, A2 and A3. The con-
sistency space is given by the equation x3 = x2

1 + x2
2 and

x1 cosx3 = x2 sinx3; the projection to the x1-x2-plane is
illustrated in Figure 1. Note that the consistency space
can be parameterized by

CE,f =
{

(θ sin θ2, θ cos θ2, θ2)>
∣∣ θ ∈ R

}
.

The corresponding tangent space is given by, for x 6= 0,

TxCE,f = span
{

(x1 + 2x2x3, x2 − 2x1x3, 2x3)>
}

(9)

and T0CE,f = span
{

(0, 1, 0)>
}

. We propose the following
Lyapunov function candidate:

V (x) = x3.

3Actually, in Owens and Debeljkovic (1985) only the complex-
valued case is studied; however, by considering the real part of the
generalized Lyapunov equation (7) we also obtain real-valued matrix
pairs (P,Q) with the desired properties.

4We thank Emilia Fridman for making us aware of this Lyapunov
function construction.

x1

x2

x2

x3

Figure 1: Consistency space of Example 2.9 in the x1-x2-plane (left)
and in the x2-x3-plane (right); the dynamics within the consistency
space are shown by the arrows.

For all x ∈ CE,f it follows that x3 = x2
1+x2

2, hence V fulfills
L1. Aiming for a function F : Rn × Rn → R satisfying
L2, i.e. for x ∈ CE,f and z ∈ TxCE,f ,

F (x,E(x)z) = z3 = ∇V (x)z, (10)

we choose, for x ∈ CE,f and v ∈ E(x)−1(TxCE,f ),

F (x, v) := 2x3v1
x1 sin x3+x2 cos x3

.

Then by using (9) as well as x1 cosx3 = x2 sinx3 we indeed
obtain (10). Finally,

V̇ (x) = F (x, f(x)) = F

((
x1
x2
x3

)
,

(
−x1 sin x3−x2 cos x3
x1 cos x3−x2 sin x3

x3−x2
1−x

2
2

))
= 2x3(−x2 sin x3−x2 cos x3)

x1 sin x3+x2 cos x3
= −2x3,

hence L3 is fulfilled and V is a Lyapunov function for (8)
and Theorem 2.7 shows that (8) is globally asymptotically
stable.

3. Solutions of switched DAEs

3.1. The general nonlinear case

Recall the switched nonlinear DAE (1)

Eσ(x)ẋ = fσ(x),

where each subsystem Ep(x)ẋ = fp(x), p = {1, . . . , p},
fulfills Assumptions A1-A3 and σ ∈ Σ is the switching
signal. As an underlying solution framework for (1), we
will use the space DpwC∞ of piecewise smooth distributions
which was introduced in (Trenn, 2009a,b) for studying lin-
ear switched DAE. For a short summary of the basic defi-
nition and the main properties of piecewise-smooth distri-
butions see the Appendix.

Definition 3.1 (Solution of (1)). A solution of (1) on
some interval I ⊆ R is any piecewise-smooth function x ∈
(C∞pw)n such that (1) restricted to I holds as an equation
of piecewise-smooth distributions, i.e.

(Eσ(x)(xD)′)I = (fσ(x)D)I.
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The product E(x)(xD)′ in Definition 3.1 is well defined,
since by assumption t 7→ E(x(t)) is piecewise smooth and
(xD)′ is a piecewise-smooth distribution. Note that this
definition of a solution does not allow for Dirac impulses
in the solution. There are two reasons for this: 1) It is
not clear how a nonlinear function of a Dirac impulse
should be defined in general and 2) for a stability anal-
ysis the existence of Dirac impulses in the solution can be
interpreted as an undesired unstable solution. However,
in Section 3.2 we will also study solutions with impulses
for linear switched DAEs. The following assumption is
essential for existence and uniqueness of solutions of the
switched DAE (1).

Assumption. The switched DAE (1) and the correspond-
ing consistency spaces Cp := CEp,fp , p ∈ {1, . . . , p}, satisfy:

A4 ∀p, q ∈ {1, . . . , p} ∀x−0 ∈ Cp ∃ unique x+
0 ∈ Cq :

x+
0 − x

−
0 ∈ kerEq(x

+
0 ).

Assumption A4 makes it possible to define nonlinear con-
sistency projectors Πq, q ∈ {1, . . . , p}:

Πq :
⋃

p
Cp → Cq, x−0 7→ x+

0 ,

where x+
0 is the unique value given by Assumption A4. In

particular, Πq(x) = x for all x ∈ Cq.

Remark 3.2 (Motivation of Assumption A4). For a
motivation of Assumption A4 consider the situation where
the system switches from subsystem p ∈ {1, · · · , p} to sub-
system q ∈ {1, . . . , p} at some switching time t ∈ R. Any
solution x (in the sense of Def. 3.1) fulfills x(t−) ∈ Cp and
x(t+) ∈ Cq and the impulsive part of ẋ at t is given by
ẋ[t] = (x(t+) − x(t−))δt, where δt denotes the Dirac im-
pulse at t. Since the right-hand side fσ(x)D does not con-
tain impulses it follows that Eσ(x)ẋ[t] = 0 must hold. This
directly implies the existence part of Assumption A4. Fur-
thermore, uniqueness of x (for a given past) follows when
x(t+) is uniquely given by x(t−), hence Assumption A4
is a necessary condition for existence and uniqueness of a
solution x of (1) in the sense of Def. 3.1. In the ODE case,
i.e. Eσ(x) ≡ I, Assumption A4 is trivially fulfilled with
x+

0 := x−0 . In the linear case an easy check for Assumption
A4 is possible, see Section 3.2.

The following Theorem shows that Assumption A4 is
also sufficient for existence and uniqueness of solutions
of (1).

Theorem 3.3 (Existence and uniqueness). Consider
the switched nonlinear DAE (1) satisfying A4 and A1-A3
for each subsystem. Then for every switching signal σ ∈ Σ
and every x0 ∈ Cσ(0−) there exists a unique solution x ∈
(C∞pw)n of (1) on [0,∞) with x(0−) = x0. Furthermore,
for all t ∈ [0,∞) and all solutions x of (1),

x(t) = Πσ(t)(x(t−)),

where Πp, p ∈ {1, . . . , p}, are the consistency projectors
induced by A4. In particular, on each interval which does
not contain a switching time, x is a classical solution of
the corresponding subsystem.

Proof. Step 1: Existence of a solution.
Let t0 = 0 and ti > 0, i = 1, 2, . . . be the ordered switch-
ing times of σ after t0 and let pi := σ(ti). Inductively
and invoking Assumption A3 choose xi ∈ (C1 ∩ C∞pw)n,

i ∈ N, such that xi is the unique (classical) solution of
Epi(x

i)ẋi = fpi(x
i) on the interval [ti, ti+1) with xi(ti) =

Πpi(x
i−1(ti−)), where x−1(t0−) := x0. We show that any

x ∈ (C∞pw)n with x(0−) = x0 and x[ti,ti+1) = xi[ti,ti+1) for
i ∈ N solves the switched DAE (1) on [0,∞). By definition
x solves (1) on each open interval (ti, ti+1) and it remains
to check that

(Eσ(x)(xD)′)[ti] = (fσ(x)D)[ti] = 0 for all i ∈ N,

where D[t] denotes the impulsive part of D ∈ (DpwC∞)n at
t ∈ R (see Appendix for details). Invoking the properties
of piecewise-smooth distributions, it follows that

(Eσ(x)(xD)′)[ti] = Epi(x(ti))
(
x(ti)− x(ti−)

)
δti

= Epi
(
Πpi

(
x(ti−)

))(
Πpi

(
x(ti−)

)
− x(ti−)

)
δti = 0,

where the last equation follows from Assumption A4.
Hence x is a solution of (1) on [0,∞).
Step 2: Uniqueness of the solution.
With the notation as in Step 1 it suffices to show that
the solution x as constructed above is unique on [0, t1),
uniqueness on [t1,∞) follows then inductively. Let z ∈
(C∞pw)n be a solution of (1) on [0, t1) with z(0−) = x0.
With a similar argument as in Step 1 it follows that

Ep0(z(0))(z(0)− x0) = 0,

hence Assumption A4 ensures z(0) = Πp0(x0) = x(0).
Furthermore, Assumption A4 also implies that z(t) =
z(t−) for all t ∈ (0, t1), hence z is continuous on (0, t1)
which together with Assumption A3 implies that z(0,t1) =
x(0,t1). Hence uniqueness of the solution is shown. qed

Remark 3.4 (Assumption A4 for each system).
Note that Assumption A4 applied to each single system,
i.e. p = q, additionally restricts the possible nonlinear
DAEs even without switching: In A4 one can always pick
x+

0 = x−0 if p = q and the asserted uniqueness of x+
0 implies

therefore

∀x+
0 ∈Cp : kerEp(x

+
0 ) ∩

{
x+

0 − x
−
0

∣∣x−0 ∈ Cp
}

={0}. (11)

So in addition to A1-A3 each subsystem must also fulfill
(11). In the linear case it can be shown that A3 already
implies (11), but in the general case this is not true as the
following example shows:

x2ẋ1 = 0

ẋ2 = 1

6



With initial value x2(0) = −t0 ∈ R, we get the unique
solution x2(t) = t−t0 and ẋ1(t) = 0 for all t 6= t0. The only
classical solution of the latter is x1(t) = x0

1, where x0
1 ∈ R

is the initial value for x1. Hence A3 holds. However,
condition A4 is not fulfilled because (11) does not hold.
In fact, when allowing jumps in solutions (as in the case
for switched DAEs) uniqueness of solutions is lost, because
x can have an arbitrary jump at t = t0 without violating
the DAE (in a distributional sense).

Remark 3.5 (Index-one systems). If the nonlinear
DAE (2) can be written as (e.g. via a (nonlinear) coordi-
nate transformation)

ẋ1 = g(x1, x2),

0 = h(x1, x2),

where h is such that x2 can be solved in terms of x1 then (in
analogy to the linear case) (2) is said to have index one. In
this case, Assumption A4 clearly holds with consistency

projector ( x1
x2

) 7→
(

x1

h(x1)

)
, where the function h is such

that x2 = h(x1) is the unique solution of h(x1, x2) = 0.
However, Assumption A4 is weaker than the index-one
assumption because it could hold even when not all sub-
systems are index-one; see also Remark 2.4.

3.2. The linear case

Consider the linear switched DAE (3) with switching
signal σ ∈ Σ. As already mentioned above, the Assump-
tions A1-A3 for each subsystem reduce to the regularity
condition det(Eps − Ap) 6≡ 0 for each subsystem. Under
this assumption (in particular without assuming A4) it
already follows from (Trenn, 2009a,b) that existence and
uniqueness of solutions of (3) is guaranteed. However,
these solutions are then elements of the space of piecewise-
smooth distributions and will therefore, in general, contain
Dirac impulses and their derivatives. The following exam-
ple illustrates this phenomenon.

Example 3.6. Consider (3) with subsystems given by

(E1, A1) = (E2, A2) =([
1 0 0
0 1 0
0 0 1

]
,
[

0 0 0
0 0 0
0 0 0

])
,

([
0 0 0
1 0 0
0 1 0

]
,
[

1 0 0
0 1 0
0 0 1

])
.

Then the switching signal σ(t) = 1 on [0, 1) and σ(t) = 2
on [1,∞) together with the initial condition x(0) = (1, 0, 0)
enforces a jump to zero in x1 at the switching time. At
the switching time the second system is already active, in
particular x2 = ẋ1 holds, hence x2 is the derivative of a
jump, i.e. x2 = −δ1 contains the Dirac impulse at t = 1.
Furthermore, also the equation x3 = ẋ2 must hold which
yields that x3 = −δ′1, i.e. x3 contains the derivative of a
Dirac impulse.

Since the presence of impulses in solutions can be seen
as an undesired unstable behavior (see the next section),

we would like to give an easily checkable condition which
ensures that for arbitrary switching all solutions of (3) are
impulse-free (but may still exhibit jumps). It will turn out
that this condition is equivalent to Assumption A4 but is
easier to check in the linear case. For the formulation of
this condition, we define the linear consistency projector
of a regular matrix pair (E,A).

Definition 3.7 (Linear consistency projector). Con-
sider a regular matrix pair (E,A) ∈ Rn×n × Rn×n and,
invoking Theorem 2.3, choose invertible matrices S, T ∈
Rn×n such that (SET, SAT ) is in quasi-Weierstrass form
(5) with n1 × n1 and n2 × n2 the corresponding diagonal
block sizes. The linear consistency projector is then given
by

ΠE,A := T [ I 0
0 0 ]T−1,

where I is an n1 × n1 identity matrix.

Let V∗ and W∗ be the limits of the Wong sequences as
in Theorem 2.3. Then it is easy to see that the definition
of ΠE,A is independent of the choice of T and that it is a
linear projection onto V∗ = CE,A along W∗, i.e.

Π2
E,A = ΠE,A, im ΠE,A = V∗, ker ΠE,A =W∗. (12)

With the help of the linear consistency projectors it is
now possible to give an easily checkable characterization
of Assumption A4.

Theorem 3.8 (Linear version of Assumption A4).
Consider the switched linear DAE (3) with regular ma-
trix pairs (Ep, Ap) and corresponding consistency projec-
tors Πp, p ∈ {1, . . . , p} as in Definition 3.7. Then As-
sumption A4 is equivalent to

∀p, q ∈ {1, . . . , p} : Eq(Πq − I)Πp = 0 (13)

and the linear mapping x−0 7→ x+
0 := Πqx

−
0 coincides with

the consistency projector associated with Assumption A4.

Proof. Let p, q ∈ {1, . . . , p} and x−0 ∈ Cp := CEp,Ap
be

arbitrary and fixed in the rest of the proof.
Step 1: We show (13)⇒ A4.
Let x+

0 := Πqx
−
0 ∈ Cq := CEq,Aq , then, since Πpx

−
0 = x−0 ,

Eq(x
+
0−x

−
0 )=Eq(ΠqΠpx

−
0−Πpx

−
0 )=Eq(Πq−I)Πpx

−
0

(13)
= 0,

hence the existence assertion of Assumption A4 is shown.
To show uniqueness of x+

0 , let z ∈ Cq be such that

z − x−0 ∈ kerEq ⊆ W∗q = ker Πq,

whereW∗q is the limit of the corresponding Wong sequence
for (Eq, Aq) as in Theorem 2.3. Together with Πqz = z
this implies z = Πqx

−
0 = x+

0 .
Step 2: We show A4⇒ (13).
Choose x+

0 ∈ Cq such that x+
0 − x−0 ∈ kerEq ⊆ W∗q =

ker Πq, hence x+
0 = Πqx

+
0 = Πqx

−
0 . Therefore, by Πpx

−
0 =

x−0 ,

0=Eq(x
+
0−x

−
0 )=Eq(ΠqΠpx

−
0 −Πpx

−
0 )=Eq(Πq−I)Πpx

−
0 .
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Since x−0 ∈ Cp = V∗p is arbitrary it follows from V∗p ⊕W∗p =
Rn together with W∗p = ker Πp that Eq(Πq − I)Πp = 0,
hence (13) holds. qed

Combining Theorems 3.3 and 3.8 yields that for ev-
ery switched linear DAE (3) with regular matrix pairs
(Ep, Ap), p = 1, . . . , p, satisfying (13) there exists a so-
lution x ∈ (C∞pw)n, unique in this class of functions. By
definition, this solution also solves (3) in the distributional
framework of (Trenn, 2009a,b). Since the switched DAE
(3) with regular pairs (Ep, Ap), p = 1, . . . , p, has a unique
distributional solution (for a fixed initial value x(0−)) we
obtain the following result.

Corollary 3.9 (Impulse-free solutions for (3)).
Consider the switched DAE (3) with arbitrary switching
signal σ ∈ Σ and regular matrix pairs (Ep, Ap) with corre-
sponding consistency projectors Πp ∈ Rn×n given by Defi-
nition 3.7. If (13) holds, then every distributional solution
x ∈ (DpwC∞)n of (3) is impulse-free.

4. Asymptotic stability of switched DAEs

Asymptotic stability for (1), with a fixed switching sig-
nal σ, can be defined basically in the same way as for the
non-switched case, see Section 2.2; the only difference is
that the solutions might have jumps, so we have to decide
where to evaluate the initial value. In view of Theorem 3.3,
we consider the initial value x(0−). Note that in the lin-
ear case Assumption A4 excludes impulses in the solution,
which is reasonable for the definition of stability, because
an impulse can be interpreted as an infinite peak which
remains infinite even when the corresponding solution is
scaled so that |x(0−)| gets arbitrarily small.

Theorem 4.1 (Arbitrary switching). Consider the
switched DAE (1) satisfying Assumption A4 and Assump-
tions A1-A3 for each subsystem with corresponding con-
sistency spaces Cp := CEp,fp and consistency projectors
Πp, p ∈ {1, . . . , p} induced by A4. Assume for each sub-
system that there exists a Lyapunov function Vp : Cp →
R≥0 in the sense of Definition 2.5. If

∀p, q ∈ {1, . . . , p} ∀x ∈ Cp : Vq(Πq(x)) ≤ Vp(x), (14)

then the switched DAE (1) is asymptotically stable for any
switching signal σ ∈ Σ.

Proof. Step 1: Definition of a Lyapunov function candi-
date.
If x ∈ Cp ∩Cq for some p, q ∈ {1, . . . , p} then x = Πp(x) =
Πq(x) hence (14) implies Vp(x) = Vq(x). Therefore

V :
⋃

p
Cp → R, x 7→ Vp(x) for x ∈ Cp,

is well defined.
Step 2: V

(
x(t)

)
→ 0 as t→∞.

Fix σ ∈ Σ and let x : [0,∞) → Rn be a solution of (1)

in the sense of Theorem 3.3. Consider an interval I ⊆ R
without switching times then x is also a classical (local)
solution of Ep(x)ẋ = fp(x) on I where p := σ(τ) for τ ∈ I.
From x(τ) ∈ Cp for all τ ∈ I it follows that V (x(τ)) =
Vp(x(τ)) and, by Definition 2.5 together with (6),

d
dtVp

(
x(τ)

)
= V̇p

(
x(τ)

)
< 0 ∀τ ∈ I.

Let t ∈ R be a switching time of σ, then x(t)=Πσ(t)

(
x(t−)

)
and x(t−) ∈ Cσ(t−), yields, invoking (14),

V
(
x(t)

)
= Vσ(t)

(
x(t)

)
= Vσ(t)

(
Πσ(t)(x(t−))

)
≤ Vσ(t−)

(
x(t−)

)
= V

(
x(t−)

)
.

Hence t 7→ v(t) = V
(
x(t)

)
is monotonically decreasing

and therefore v := limt→∞ v(t) ≥ 0 is well defined. Seek-
ing a contradiction, assume v > 0. Analogously to the
proof of Theorem 2.7 let Kp := V −1

p [v, v(0)],Mp := V̇ (Kp)
and mp := −maxMp > 0. Let m = minpmp > 0 then
d
dtv(t) < −m < 0 for all non-switching (hence almost all)
times t ≥ 0, which contradicts v(t) ≥ 0 and the assertion
of Step 2 is shown.
Step 3: x(t)→ 0 as t→∞.
Seeking a contradiction, assume x(t) 6→ 0. Then there ex-
ists ε > 0 and a sequence (si)i∈N ∈ RN with si → ∞ as
i→∞ such that |x(si)| > ε for all i ∈ N. There is at least
one p ∈ {1, . . . , p} such that the set { i ∈ N | σ(si) = p }
has infinitely many elements, therefore, without loss of
generality, assume that σ(si) = p for some p and all i ∈
N. Since each x(si) is contained within the compact set
V −1
p [0, V (x(0))], the same argument as in the proof of The-

orem 2.7 shows existence of x∗ 6= 0 such that we arrive at
the contradiction 0 = limt→∞ V (x(t)) = limi→∞ Vp(x(si))
= Vp(x

∗) 6= 0.
Step 4: Stability of the switched DAE.
We first show that for all ε > 0 there exists bε > 0 such
that for all p ∈ {1, . . . , p} and all x ∈ Cp:

Vp(x) < bε ⇒ |x| < ε. (15)

Assume the contrary, then there exists ε > 0 and se-
quences (pn)n∈N and (xn)n∈N such that Vpn(xn) < 1/n
and |xn| ≥ ε. There exist at least one p ∈ {1, . . . , p}
which occurs infinitely often in the sequence (pn), so we
can, without loss of generality, assume that pn = p for
all n ∈ N and some p ∈ {1, . . . , p}. Then, by L1, all xn
are contained in the compact set V −1

p [0, Vp(xnmax
)] where

nmax := argmaxn Vp(xn) < ∞. This implies that there
exists x∗ ∈ Cp which is a limit of a subsequence of (xn)
and with |x∗| ≥ ε. Hence we arrive at the contradiction
0 = limn→∞ Vp(xn) = Vp(x

∗) 6= 0 and the claim (15) is
shown.

For a given ε > 0 choose bε > 0 according to (15).
Let p0 := σ(0−), then by continuity of Vp0 there exists
δ > 0 such that |x| < δ implies Vp0(x) < bε for all x ∈
Cp0 . In Step 2 it was shown that t 7→ Vσ(t−)(x(t−)) is
monotonically decreasing, hence Vσ(t−)(x(t−)) < bε for all
t ≥ 0. Hence (15) yields |x(t−)| < ε for all t ≥ 0. qed
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Condition (14) implies that any two Lyapunov func-
tions Vp and Vq coincide on the intersection Cp∩Cq, hence
Theorem 4.1 is a generalization of the switched ODE case
where the existence of a common Lyapunov function is suf-
ficient to ensure stability under arbitrary switching (Liber-
zon, 2003, Thm. 2.1). However, without condition (14) the
existence of a common Lyapunov function is not enough
(Liberzon and Trenn, 2009) for asymptotic stability of the
switched DAE (1). Under arbitrary switching, solutions
will in general exhibit jumps; these jumps are described
by the consistency projectors, and these projectors must
“fit together” with the Lyapunov functions in the sense of
(14) to ensure stability of the switched DAE under arbi-
trary switching. Finally, with some additional effort it can
be shown that the hypotheses of Theorem 4.1 guarantee
uniformity of the asymptotic stability with respect to the
switching signal.

It is well-known for switched ODEs that by restricting
the class of switching signals one can obtain asymptotic
stability also in cases where no common Lyapunov func-
tion exists. Denote by Nσ(t, T ) the number of switchings
of σ in the interval [t, T ) and define the class of average
dwell time switching signals with average dwell time τa > 0
(Hespanha and Morse, 1999)

Στa :=

{
σ ∈ Σ

∣∣∣∣∣ ∃N0 > 0 ∀t ∈ R ∀∆t > 0 :

Nσ(t, t+ ∆t) < N0 + ∆t
τa

}
.

The number N0 > 0 is called chatter bound of the switch-
ing signal σ ∈ Στa . Note that the subset of average dwell
time switching signals with chatter bound N0 = 1 is pre-
cisely the class of switching signals with dwell time τa.

Theorem 4.2 (Average dwell time switching). Con-
sider the switched DAE (1) with corresponding consistency
space Cp and consistency projectors Πp, p ∈ {1, . . . , p}.
Assume that all subsystems permit a Lyapunov function
Vp, p ∈ {1, . . . , p}, which additionally fulfill

1. ∃λ > 0 : V̇p(x) ≤ −λVp(x) for all p ∈ {1, . . . , p},
x ∈ Cp and

2. ∃µ ≥ 1: Vq(Πq(x)) ≤ µVp(x) for all p, q ∈ {1, . . . , p},
x ∈ Cp.

Then the switched DAE (1) with switching signal σ ∈ Στa
is asymptotically stable if

τa >
lnµ
λ . (16)

Proof. With standard arguments (cf. (Liberzon, 2003))
it follows that the non-negative function t 7→ Vσ(t−)(x(t−))
is bounded by an exponentially decreasing function and
hence converges to zero. Arguments analogous to those
in Step 3 and Step 4 of the proof of Theorem 4.1 now
conclude the proof. qed

In the linear case the Lyapunov functions can be cho-
sen according to Remark 2.8; in this case it is possible to
express the inequality (16) for the average dwell time di-
rectly in terms of eigenvalues of corresponding matrices.

Lemma 4.3 (The linear case). Consider the linear
switched DAE (3) with the regular matrix pairs (Ep, Ap),
p ∈ {1, . . . , p} with corresponding consistency spaces Cp,
and let (Pp, Qp) be the solutions of the corresponding gen-
eralized Lyapunov equation (7). Choose a matrix Op with
orthonormal columns such that imOp= im Πp= Cp, where
Πp is the linear consistency projector corresponding to the
matrix pair (Ep, Ap). Then, for p, q ∈ {1, . . . , p},

∀x ∈ Cp : Vq(Πqx) ≤ µp,qVp(x),

where µp,q :=
λmax(O>

p Π>
q E

>
q PqEqΠqOp)

λmin(O>
p E

>
p PpEpOp)

≥ 0 and

∀x ∈ Cp : V̇p(x) ≤ −λpVp(x),

where λp :=
λmin(O>

p QpOp)

λmax(O>
p E

>
p PpEpOp)

> 0 and where λmin(·) and

λmax(·) denote the minimal and maximal eigenvalue of a
symmetric matrix, respectively.

Proof. Let dp := dimCp, i.e. Op ∈ Rn×dp , then x ∈
Cp if, and only if, there exists a unique z ∈ Rdp with
x = Opz, O

>
p x = z and |x| = |z|. Hence, by choosing z

corresponding to x ∈ Cp as above,

Vp(x) = z>O>p E
>
p PpEpOpz =: z>P zp z

≥ λmin(P zp )|z|2 = λmin(P zp )|x|2

Vp(x) ≤ λmax(P zp )|x|2

Vq(Πqx) = z>O>p Π>q E
>
q PqEqΠqOpz =: z>Mz

p,qz

≤ λmax(Mz
p,q)|x|2

V̇p(x) = −z>O>p QpOpz =: −z>Qzpz ≤ −λmin(Qzp)|x|2

By assumption, the matrices Qzp = Qzp
> ∈ Cdp×dp and

P zp = P zp
> ∈ Cdp×dp are positive definite, hence λmin(Qzp)

> 0 and λmax(P zp ) ≥ λmin(P zp ) > 0. Therefore,

µp,q :=
λmax(Mz

p,q)

λmin(P z
p ) ≥ 0, λp :=

λmin(Qz
p)

λmax(P z
p ) > 0

are well defined. Note that λmax(Mz
p,q) = 0 is possi-

ble, however λmax(Mz
p,p) = λmax(P zp ) ≥ λmin(P zp ), hence

µp,p ≥ 1 and maxp,q lnµp,q ≥ 0. qed

Corollary 4.4 (Average dwell time, linear case).
For the switched linear DAE (3) with asymptotically sta-
ble subsystems, let µp,q and λp, p, q ∈ {1, . . . , p} be given
as in Lemma 4.3. Then the linear switched DAE (3) is
asymptotically stable if σ ∈ Στa with

τa >
maxp,q lnµp,q

minp λp
.

Note that the obtained results cannot in general be ex-
pressed in terms of the eigenvalues of the matrices Qp
and Pp (or E>p PpEp); the consistency projectors and ba-
sis transformation must be incorporated as formulated in
Lemma 4.3. We show the application of Corollary 4.4 with
a simple linear example, which is based on Example 1 from
(Liberzon and Trenn, 2009).
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Example 4.5. Let

(E1, A1) =
(
[ 0 1
0 0 ] ,

[
0 −1
1 −1

])
, (E2, A2) =

(
[ 1 1
0 0 ] ,

[−1 −1
1 0

])
.

The corresponding consistency spaces and consistency pro-
jectors are given by

C1 := CE1,A1 = im [ 1
1 ] , C2 := CE2,A2 = im [ 0

1 ]

and Π1 = [ 0 1
0 1 ], Π2 = [ 0 0

1 1 ]. In Liberzon and Trenn (2009)
it is shown that the corresponding switched DAE is not
asymptotically stable under arbitrary switching. However,
we can apply the result of Corollary 4.4. As basis matri-

ces for the consistency space choose O1 = 1
2

[√
2√
2

]
, O2 =

[ 0
1 ]. Consider the Lyapunov functions V1(x) = 1

2x
2
2 and

V2(x) = 1
2 (x1 + x2)2, corresponding to P1 = P2 = 1

2 [ 1 0
0 0 ]

and Q1 = [ 0 0
0 1 ], Q2 = [ 1 1

1 1 ]. Then

O>1 E
>
1 P1E1O1 = 1

4 , O>2 E
>
2 P2E2O2 = 1

2 ,

O>1 Π>2 E
>
2 P
>
2 E2Π2O1 = 1, O>2 Π>1 E

>
1 P
>
1 E1Π1O2 = 1

2 ,

O>1 Q1O1 = 1
2 , O>2 Q2O2 = 1,

hence µ := maxp,q µp,q = 2 and λ := minp λp = 2. There-
fore the corresponding switched DAE is asymptotically
stable for all switching signals σ ∈ Στa with τa > ln 2

2 .
This bound is actually sharp in this example.

5. Conclusion

We have studied switched nonlinear DAEs with respect
to solution and stability theory. For the non-switched non-
linear DAE subsystems we generalized the classical Lya-
punov’s Direct Method, in particular, we defined a Lya-
punov function for quasi-linear DAEs in general terms.
Furthermore, we studied existence and uniqueness of solu-
tions of a switched nonlinear DAE, provided the subsys-
tems are regular in a certain sense. Finally, we were able
to generalize existing stability results on switched ODEs
to switched DAEs.

Appendix: Piecewise smooth distributions

We assume familiarity with the definitions and prop-
erties of classical distributions as formalized by Schwartz
(Schwartz, 1950, 1951). We denote the space of test func-
tions (i.e., smooth functions ϕ : R → R with compact
support) by C∞0 , then the space of distributions is the dual
space of the space of test functions, i.e.

D := { D : C∞0 → R | D is linear and continuous } .

The main two properties of distributions are 1) that
they can be interpreted as generalized functions and 2)
that they are arbitrarily often differentiable. To be more
precise, let L1,loc be the space of locally integrable func-
tions, then the mapping

L1,loc → D, f 7→ fD :=

(
ϕ 7→

∫
R
fϕ

)

is well defined (i.e. fD is indeed a distribution) and an
injective homomorphism. The simplest distribution which
is not induced by a function is the Dirac impulse given by
δ(ϕ) := ϕ(0), or, in general for t ∈ R, δt(ϕ) := ϕ(t) for
ϕ ∈ C∞0 . The derivative of an arbitrary distribution D ∈ D
is given by D′(ϕ) := −D(ϕ′) for ϕ ∈ C∞0 . Distributions
can be multiplied with smooth functions:

(αD)(ϕ) := D(αϕ), α ∈ C∞, D ∈ D, ϕ ∈ C∞0 .

Let C∞pw be the space of piecewise-smooth function,
where α : R → R is called piecewise-smooth when there
exists a locally finite ordered set S = { si ∈ R | i ∈ Z }
and smooth functions αi ∈ C∞, i ∈ Z, such that α =∑
i∈Z(αi)[si,si+1). Here, fI denotes the restriction (or trun-

cation) of a function f : R→ R to the interval I ⊆ R, i.e.
fI(τ) = f(τ) for τ ∈ I and fI(τ) = 0 otherwise. The space
of piecewise-smooth distributions is then given by

DpwC∞ :=

{
fD +

∑
τ∈T

Dτ

∣∣∣∣∣f ∈ C∞pw, T ⊆ R locally finite,

∀τ ∈ T : Dτ ∈ span{δτ , δ′τ , δ′′τ , . . .}

}
.

The properties of DpwC∞ and corresponding definitions are
summarized in the following, where D = fD +

∑
τ∈T Dτ ∈

DpwC∞ and t ∈ R:

1. Closed under differentiation: D′ ∈ DpwC∞ .

2. Left- and right-evaluation: D(t+) := f(t), D(t−) :=
f(t−).

3. Impulsive part: D[t] := Dt if t ∈ T , D[t] = 0 other-
wise.

4. Restriction to interval: DI := (fI)D +
∑
τ∈T∩I Dt,

where I ⊆ R is some interval.

5. Multiplication with piecewise-smooth function: αD
:=
∑
i∈Z αiD[si,si+1), where α =

∑
i∈Z(αi)[si,si+1) as

above; in particular, αδt = α(t)δt.

For more details see (Trenn, 2009a,b). In the proof of
Theorem 3.3 we actually need the fact that for any α ∈
C∞pw, (αD)[t] = αD[t] and

(αD)′ =
∑
i∈Z

(α′i)[si,si+1) +
∑
i∈Z

(αi(si)− αi−1(si))δsi ,

where α =
∑
i∈N(αi)[si,si+1) as above.
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trices. Bull. de la Societé Mathématique de France 74, 130–146.
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