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The bang-bang funnel controller for uncertain
nonlinear systems with arbitrary relative degree

Daniel Liberzon and Stephan Trenn

Abstract—The paper considers output tracking control of
uncertain nonlinear systems with arbitrary known relative degree
and known sign of the high frequency gain. The tracking objec-
tive is formulated in terms of a time-varying bound—a funnel—
around a given reference signal. The proposed controller is bang-
bang with two control values. The controller switching logic
handles arbitrarily high relative degree in an inductive manner
with the help of auxiliary derivative funnels. We formulate a set
of feasibility assumptions under which the controller maintains
the tracking error within the funnel. Furthermore, we prove that
under mild additional assumptions the considered system class
satisfies these feasibility assumptions if the selected control values
are sufficiently large in magnitude. Finally, we study the effect
of time delays in the feedback loop and we are able to show that
also in this case the proposed bang-bang funnel controller works
under slightly adjusted feasibility assumptions.

I. INTRODUCTION

Is it possible to design a controller which only uses two
values, “bang-bang”, such that the output of an uncertain
system tracks an arbitrary reference signal with a prespecified
strict error bound guaranteeing a desired transient response as
well as a desired arbitrary tracking accuracy? The surprising
answer to this question is: Yes, provided the system in question
has a known relative degree r ∈ N and the two input values
are large enough.

Our main contribution is therefore the presentation of a new
controller design—the bang-bang1 funnel controller—which is
able to achieve the above objectives while remaining simple to
implement even for high relative degree systems. In particular,
we are “overcoming the obstacle of high relative degree” [16]
with a simple and intuitive controller.

The above question without the bang-bang assumption was
already posed and answered in 1991 by Miller and Davison
[15] for linear systems with arbitrary relative degree but
the prespecified error bounds were piecewise-constant with
two values only. The same affirmative answer for a more
general prespecified error bound, the funnel, was obtained by
Ilchmann et al. [7] where only the relative degree one case
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1Here by “bang-bang-control” we mean the case that the controller produces
a scalar piecewise-constant input signal which can only attain two values
U− ∈ R and U+ ∈ R with U− < U+; in most cases it actually holds that
U− < 0 < U+ although our theory does not need the latter assumption in
general.

was considered but the system class encompassed nonlinear
systems, modeled with functional differential equations, in-
cluding hysteresis effects and delays. The so-called funnel
controller was later successfully applied to systems with higher
relative degree [8] using a “backstepping” procedure. In the
latter work a nice review is given on known controller designs
for systems with high relative degree, see also [16] which
discusses the “obstacles of high relative degree” for adaptive
control problems in general. The funnel controller was also
studied with respect to input constraints, first for a model of
chemical reactors [9] and later for the general case [5], [6].
These works only considered the relative degree one case and
only recently it was possible to construct a funnel controller
with input saturations for the relative degree two case [3]. The
latter paper used the new approach to introduce a funnel also
for the derivative of the error and strongly inspired our first
work [12] on the bang-bang funnel controller which considers
relative degree one and two, but the controller design in [12]
is completely different from the one in [3]. The current paper
extends our results in [12] to arbitrary relative degree without
high “costs” on the design. In fact, as shown in Figure 2
our switching logic consists of r basically identical, simple
blocks, where r ∈ N is the relative degree. This is a major
advantage over other methods like backstepping where high
implementation costs occur when the relative degree is high.

The approach taken here is similar to sliding-mode control
[18] and there are sliding mode controllers available for
arbitrary high relative degree [11]. However, in contrast to
sliding mode control, the bang-bang funnel controller explic-
itly defines (time-varying) error bounds and is therefore also
able to guarantee desired transient behavior whereas sliding
mode control only specifies the desired sliding surface without
any additional prespecified error bounds. Furthermore, sliding
mode control by design has the problem of implementation
as the exact sliding on the desired surface only appears in
theory; for any practical implementation some measure must
be taken to prevent chattering. The design of the bang-bang
funnel controller is such that it can readily be implemented
and chattering does not occur.

The bang-bang funnel controller also shares many features
with event-based controllers [1], in particular, a control action
(change from u = U+ to u = U− or vice versa) only takes
place when necessary (i.e. when the error signal approaches
the corresponding funnel boundary). However, we are not
aware of any event based control scheme capable of achieving
reference tracking with prespecified error accuracy for an
unknown nonlinear system with arbitrary relative degree.

Altogether the bang-bang funnel controller has the following
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advantages and motivations:

(i) In a digitally connected systems framework the com-
munication from the controller to the system only needs
one bit and this bit is only sent when necessary.

(ii) The control action might in reality only consist of
“On” and “Off” and our controller does take this into
account explicitly (no pulse-width modulation or similar
techniques are needed); see also the recent work on
discrete-valued control, e.g. [19].

(iii) Using the maximal possible input values yields faster
“convergence” compared to using the continuous funnel
controller with input constraints (in general, a time
optimal control is often bang-bang).

(iv) Due to time delays and hysteresis effects the implemen-
tation of simple sliding mode controller [18] usually
results in a bang-bang controller; however, the resulting
switching signal is often only given implicitly and is
not designed explicitly. In contrast to sliding mode
control, we start our theoretical analysis directly from
a switching rule with locally finite switchings.

(v) In some areas (e.g. power electronics) it is common to
use so-called averaging methods (for a recent overview
see e.g. [17]), i.e. a binary input signal is switched
very fast with a certain ratio of the two values. For the
analysis it is then assumed that the input is actually the
continuous value determined by this ratio; our approach
allows for a direct analysis of the systems behavior for
a binary input signal.

(vi) Almost all controllers are now implemented digitally; a
bang-bang approach (or a controller with only a finite
set of possible values) is therefore a much more natural
approach.

(vii) In contrast to continuous controllers the implementation
of a bang-bang controller is much simpler in general
because it suffices to implement a simple finite automa-
ton, whereas a classical continuous controller might need
to carry out complex mathematics like (numerically)
solving differential equations in real time.

Clearly, using a bang-bang control is not always desirable,
e.g. when fast changes of the input values are not physically
possible. Furthermore, of course “there is no such thing as a
free lunch”, i.e. rather strong control objectives come with a
price: The input values might be very large, the time difference
between consecutive switches of the input values might be very
small and the proposed controller will need the measurement
of the first r − 1 derivatives of the error, which might be
in reality not available for measuring. However, we see our
main contribution in providing a proof-of-concept for a new
controller design; an application to real world problems might
need further adjustments which are not in the main scope of
this paper. Therefore, a large part of this paper is devoted to
the precise definition of the controller and detailed proofs of
the theoretical results which also give an intuition why the
controller works. Our main results are not only “existence”
results because we also formulate “feasibility assumptions”
which can be checked provided that at least some bounds
on the systems dynamics are known and which, if satisfied,

guarantee that our proposed controller works as desired.
The paper is organized as follows. We start by presenting

a formal problem description in Section II and detail which
structural assumption we make. The switching logic is defined
afterwards in Section III. After the formal definition of the
switching logic we already formulate in Section III-C an im-
portant consequence of our forthcoming main results, namely
that under rather mild assumptions the bang-bang funnel con-
troller works provided the input values U+ > 0 and U− < 0
are large enough. Our main result, Theorem 4.1, is formulated
in Section IV after the feasibility assumptions are formulated
and briefly explained. With the help of Theorem 4.2 we
show that the feasibility assumptions are not contradictory
and present a constructive procedure how to construct feasible
funnels and controller parameters. Since the closed loop is a
hybrid system, some effort must be taken to show that the
system in closed loop with the bang-bang funnel controller is
well posed, i.e. the existence of local solutions must be shown.
This is done with the help of Theorem 5.3 in Section V. The
proof of the main result is carried out in Section VI and uses
an inductive argument to prove the result for arbitrary relative
degree. In Section VII we briefly discuss the possibilities of
time delays in the feedback loop and show that the bang-bang
funnel controller can tolerate them; the allowed size of the
time delays can again be checked with the help of feasibility
assumptions. Finally, we carry out simulation for a relative
degree four example in the Section VIII.

Throughout this paper we use the following notation. The
(Euclidian) norm of x ∈ Rn is denoted with |x|. For defin-
ing predicates (i.e. functions with values in the set {true,
false}) we use the notation [statement] ∈ {true, false};
the negation of a boolean variable b is denoted by ¬b. For a
function f : R → R and an interval I ⊆ R we denote with
fI : R → R the truncation of f to the interval I given by
fI(x) = f(x) for all x ∈ I and fI(x) = 0 otherwise. With
Ck(X → Y ), or short Ck, we denote the set of all k-times
continuously differentiable functions f : X → Y ; Ckpw denotes
piecewise k-times continuously differentiable functions (not
necessarily continuous). For a piecewise-continuous function
f and t ∈ R let f(t−) := limε↘0 f(t−ε). With L∞(X → Y )
we denote the set of all measurable and essentially bounded
functions f : X → Y with the supremum norm ‖f‖∞. The set
Wk,∞(X → Y ) denotes the set of all functions f : X → Y
with absolutely continuous (k − 1)-th derivative and right-
continuous k-th derivative and, additionally, f (i) ∈ L∞(X →
Y ) for all i = 0, 1, . . . , k. Throughout this work n ∈ N denotes
the state dimension of the system and r ∈ N with 1 ≤ r ≤ n
is the relative degree as defined in Section II-B.

II. PROBLEM FORMULATION AND STRUCTURAL
ASSUMPTIONS

A. Overall system structure and control objectives

We consider SISO systems described by a nonlinear differ-
ential equation

ẋ = F (x) +G(x)u, x(0) = x0 ∈ Rn

y = H(x)
(1)
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with known relative degree r and positive “high frequency”
gain (see the following Section II-B for details). System (1) is
uncertain in the sense that we don’t have exact knowledge of
F , G and H (for example the system description might contain
numerous unknown parameters). Our aim is to develop a bang-
bang funnel controller by a feedback mechanism as shown in
Figure 1a which ensures approximate tracking of a reference
signal yref : R≥0 → R.

ẋ = F (x) +G(x)u

y = H(x)
y

Switching
logic S + −yref

FunnelU+U−

eq

u

(a) Overall system structure.

t

ϕ+
0 (t)

ϕ−
0 (t)

e(t)

F0

(b) The funnel F0: A time-varying error bound.

Fig. 1: The overall setup for the bang-bang funnel controller.

In fact, we want to ensure that the error

e := y − yref (2)

meets prespecified (time-varying) error bounds which are
given by the funnel

F0 :=
{

(t, e) ∈ R≥0 × R
∣∣ ϕ−0 (t) ≤ e ≤ ϕ+

0 (t)
}
, (3)

where ϕ−0 , ϕ
+
0 : R≥0 → R are the prespecified (time-varying)

error bounds, see also Figure 1b. Note that by saying “the error
evolves within the funnel” we formally mean (t, e(t)) ∈ F0

for all t ≥ 0.
We use the index 0 for the funnel because we will also

consider funnels Fi, i = 1, . . . , r − 1 for the i-th derivative
e(i) of e. In particular, the switching logic is allowed to
take derivatives of the error signal e, but otherwise it has,
apart from the relative degree, no knowledge of the system
(1). However, to meet the desired error bounds the system
must fulfill certain feasibility assumptions, which can only
be checked when certain bounds on the system dynamics are
known.

The most important property of the system class considered
here is an instantaneous input-output property that can be

paraphrased as follows for any t ≥ 0:

u(t)� 0 ⇒ y(r)(t)� 0,

u(t)� 0 ⇒ y(r)(t)� 0,
(4)

and follows from the structural assumption (F1) below. Apart
from some boundedness conditions, nothing more is needed
to prove our main result. In fact, it is actually possible to even
further broaden the system class considered, e.g. by including
functional differential equation like hysteresis effects and time
delays as was done in [7]. However, we do not use this most
general setup in order to avoid technicalities and also to focus
more on the switching logic.

B. Structural assumptions on the system class and the refer-
ence signal

Throughout this work we assume that system (1) has known
relative degree r ∈ N with positive gain, i.e. we make the
following structural assumption.

(F1) There exists a coordinate transformation (a dif-
feomorphism) x 7→ (Y r−1, z>)>, Y r−1 :=
(y, ẏ, . . . , y(r−1)), which transforms (1) to the equiv-
alent system in Byrnes-Isidori normal form [10]:

y(r) = f(Y r−1, z) + g(Y r−1, z)u,

Y r−1(0)> = y0 ∈ Rr

ż = h(Y r−1, z), z(0)=z0 ∈ Z0 ⊆ Rn−r

 (5)

where f, g, h are locally Lipschitz continuous, g is
positive and Z0 is a possibly known restriction for
the initial values of the z-system (Z0 = Rn−r means
that there is no knowledge). Furthermore, we assume
that the z-system does not have a finite escape time
for any bounded “input” vector Y r−1, i.e.

∀Y r−1∈L∞(R≥0→R)r ∀z0 ∈ Z0 ⊆ Rn−r

∃ global solution z : R≥0 → Rn−r for

ż(t) = h(Y r−1(t), z(t)), z(0) = z0.

 (6)

Since we will consider non-continuous inputs u we have to
allow for solutions in the sense of Carathéodory, i.e. y(r−1) and
z are absolutely continuous and (5) holds almost everywhere.
The original system (1) inherits this solution concept. For the
implementation of the bang-bang funnel controller the knowl-
edge of the Byrnes-Isidori normal form (and the corresponding
coordinate transformation) is not needed, however in order to
check the feasibility assumptions the knowledge of (at least
certain bounds on) f , g and h is needed.

We call the z-system in (5) bounded input bounded state
(BIBS) with respect to the “inputs” Y r−1 if

∃γ : Rr × R→ R≥0 continuous s. t. ∀z0 ∈ Z0

∀Y r−1 = (y0, . . . , yr−1) ∈ L∞(R≥0 → R)r :

(6) holds and ‖z‖∞≤γ(‖y0‖∞, . . . , ‖yr−1‖∞, |z0|).

 (7)

Finally, we assume that the controller is able to obtain the
derivatives ė, ë, . . . , e(r−1) of the error signal e := y− yref, in
particular we have to make the following assumption on the
reference signal:

(F2) yref ∈ Cr−1(R≥0 → R) and y
(r−1)
ref is absolutely

continuous with right-continuous derivative.
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III. THE SWITCHING LOGIC

A. Overview and the structure of the switching logic

As indicated in Figure 1a the bang-bang control law is
simply given by

u(t) =

{
U−, if q(t) = true,

U+, if q(t) = false,
(8)

where q : R≥0 → {true, false} is the output of the
switching logic S which maps the error signal to the switching
signal q.

S
S1 Sr−2 Sr−1

B0 B1 · · · Br−2 Br−1

e

ϕ+
0 , ϕ

−
0

ε+0 , ε
−
0

ė

ϕ+
1 , ϕ

−
1

ε+1 , ε
−
1

λ+1 , λ
−
1

· · · e(r−2)

ϕ+
r−2, ϕ

−
r−2

ε+r−2, ε
−
r−2

λ+r−2, λ
−
r−2

e(r−1)

ϕ+
r−1, ϕ

−
r−1

ε+r−1, ε
−
r−1

λ+r−1, λ
−
r−1

q1

ψ1

q2

ψ2

qr−2

ψr−2

qr−1

ψr−1

q

d
dt

d
dt

d
dt

d
dt

Fig. 2: Illustration of the structure of the switching logic (9). The
meaning of the meta blocks S1, . . . , Sr−1 will be discussed in
Section VI, in particular, Si is given by (16).

The switching logic S : e 7→ q is defined with the help of
r blocks B0,B1, . . . ,Br−1 as follows, see also Figure 2:

S(e) = Br−1(e(r−1), qr−1, ψr−1),

(qi, ψi) = Bi−1(e(i−1), qi−1, ψi−1), i=r−1, . . . , 2,

(q1, ψ1) = B0(e).

 (9)

Before formally defining the blocks Bi we want to highlight
some important properties of the switching logic. Each block
Bi tries to ensure that the i-th derivative of the error e(i)

remains within the funnel

Fi :=
{

(t, e) ∈ R≥0 × R
∣∣ ϕ−i (t) ≤ e ≤ ϕ+

i (t)
}
,

where ϕ±i : R≥0 → R are the desired funnel boundaries
satisfying the forthcoming feasibility assumptions (F3)–(F8);
in addition Bi ensures that e(i) is driven to a certain region
specified by the input signals qi : [0,∞) → {true, false}
and ψi : [0,∞) → R. The meaning of the internal signals qi
and ψi, i = 1, 2, . . . , r − 1 is as follows (see also Figure 6):

qi = true ⇒ make e(i) smaller than min{ψi,−λ−i },
qi = false ⇒ make e(i) bigger than max{ψi, λ+

i }.
Here λ+

i , λ
−
i ∈ R≥0 are design parameters of the block Bi

representing a desired minimal or maximal value for e(i) (with
the aim to increase or decrease the previous derivative e(i−1)

by a certain rate). Finally, each block Bi also has the design
parameters ε+

i , ε
−
i ∈ R≥0, the safety distances, which trigger

an event (hence a switch in the internal or external signals),
when the error gets close to the funnel boundaries. The
interpretation of the output q of the switching logic is similar
as above: If q = true we want to make e(r) negative enough
so that e(r−1) decreases sufficiently fast and if q = false

we want to make e(r) positive enough to ensure a sufficiently
increasing e(r−1). Due to the normal form (5) this can directly
be achieved by choosing u = U− or u = U+ accordingly with
sufficiently large U− and U+.

B. The definition of the blocks Bi

The main “ingredient” of each block Bi is the following
elementary predicate function (to improve readability we high-
light the second and third argument with different colors):

S (e, e, e, qold) := [e ≥ e ∨ (e > e ∧ qold)], (10)

for e, e, e ∈ R and qold ∈ {true, false}. The corresponding
dynamic logic system (DLS) on some interval [t0, t1) ⊆ R is
given by

q(t) = S (e(t), e(t), e(t), q(t−)) ,

q(t0−) = q0 ∈ {true, false}, (11)

where e(·) is the upper switch trigger and e(·) is the lower
switch trigger and e(·) is the “input” which drives the system.
A typical behavior of the DLS (11) is shown in Figure 3.

e(·)

e(·)
e(·)

q(t) = false q(t) = true q(t) = false

Fig. 3: Illustration of the basic switching predicate S and the
corresponding DLS (11) for some given “input signal” e(·) (thick
solid line). The dots indicate which switch trigger is active. Note
that it is not assumed that e(·) is always contained within the lower
switching trigger e(·) and the upper switch trigger e(·) and it is
possible that e(·) is identical with one of the switching triggers for
some time.

Invoking the simple switching predicate S the for-
mal definitions of the DLSs represented by the blocks
B0,B1, . . . ,Br−1 are as follows.

B0 : e 7→ (q1, ψ1) with

q1(t) = S
(
e(t), ϕ+

0 (t)− ε+
0 , ϕ

−
0 (t) + ε−0 , q1(t−)

)
,

q1(0−) = q0
1 ∈ {true, false},

ψ1(t) =

{
ϕ̇+

0 (t), if q1(t) = true,

ϕ̇−0 (t), if q1(t) = false,
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Bi : (e(i), qi, ψi) 7→ (qi+1, ψi+1), i = 1, . . . , r − 2, with
qi+1(t) =

S
(
e(i)(t), ψ+

i (t)− ε+
i , ϕ

−
i (t) + ε−i , qi+1(t−)

)
,

if qi(t) = true,

S
(
e(i)(t), ϕ+

i (t)− ε+
i , ψ

−
i (t) + ε−i , qi+1(t−)

)
,

if qi(t) = false,

ψ+
i (t) :=min{ψi(t),−λ−i }, ψ−i (t) :=max{ψi(t), λ+

i },
qi+1(0−) = q0

i+1 ∈ {true, false},
ψi+1(t) =
ψ̇i(t+), if qi(t) = true ∧ qi+1(t) = true,

ϕ̇−i (t), if qi(t) = true ∧ qi+1(t) = false,

ϕ̇+
i (t), if qi(t) = false ∧ qi+1(t) = true,

ψ̇i(t+), if qi(t) = false ∧ qi+1(t) = false,

Br−1 : (e(r−1), qr−1, ψr−1) 7→ q given as above with
i = r − 1 and q = qr,

q(0−) = q0 ∈ {true, false}.
Note that ψi will not be continuous in general, therefore ψ̇i is
not well defined. However, it will turn out that the switching
logic ensures that ψi is piecewise continuously differentiable
and ψ̇(t+) is then well defined.

Explicit definitions of the switching logic for the cases
r = 1, r = 2 and r = 3 are given in the Appendix. For the
case r = 3 a generic closed-loop behavior of the switching
logic is illustrated in Figure 4 where, for simplicity, we have
considered only constant funnel boundaries. The meaning of
the internal variables q1 and q2 mentioned above is clearly
visible: q1 ≡ true means we want to decrease the error e,
i.e. we want to drive the derivative ė into the desired region
[−λ−1 , ϕ−1 ]. When we hit the lower safety distance for e we
switch q1 to q1 ≡ false, which means now we want to
increase e. Due to the higher relative degree we can not
directly influence the error via the control input, hence we
see a certain amount of overshoot.

C. A simple consequence of our forthcoming main results

If all funnel boundaries and the input values U± are already
fixed (e.g. due to physical constraints) then the feasibility
assumptions in the next section can be checked and our forth-
coming main result Theorem 4.1 shows then that feasibility
is sufficient for the applicability of the bang-bang funnel
controller. If one however has the freedom to choose the
funnel boundaries for the derivatives of the error and also
the input values U± then combining our main result with
the forthcoming Theorem 4.2 (stating that feasibility can be
achieved by appropriately choosing the funnel boundaries)
yields that the bang-bang funnel controller always works as
long as the input values U± are large enough:

Corollary 3.1 (Bang-bang funnel controller works): Con-
sider the nonlinear system (1) satisfying (F1) with relative
degree r ≥ 1, bounded set Z0 and the z-system being BIBS,
a reference signal yref satisfying (F2) and, additionally, being

bounded with bounded derivatives, and a funnel F0 for the
error signal e := y − yref given by ϕ±0 satisfying

(F0
3) ϕ−0 (0) < e(0) < ϕ+

0 (0),
(F0

4) ϕ+
0 , ϕ

−
0 ∈ Wr,∞(R≥0 → R), in particular (ϕ±0 )(i),

i = 0, 1, . . . , r are (essentially) bounded,
(F0

5) lim supt→∞
(
ϕ+

0 (t)− ϕ−0 (t)
)
> 0.

Then there exist funnel boundaries ϕ±i , i = 1, 2, . . . , r − 1,
safety distances ε±i , i = 0, 1, . . . , r− 1, and increase/decrease
rates λ±i , i = 1, 2, . . . , r − 1 such that the bang-bang funnel
controller as given by (8), (9) and Section III-B works for
large enough input values U+ > 0 and U− < 0, i.e.

(i) the closed loop as shown Figure 1a has a global solution
(x, q) : R≥0 → Rn × {true, false},

(ii) the error and its derivatives evolve within the funnels,
i.e. ϕ−i (t) ≤ e(i)(t) ≤ ϕ+

i (t) for all t ≥ 0 and i =
0, 1, . . . , r − 1,

(iii) no Zeno behavior occurs, i.e. the switching signal q only
switches finitely often on every finite time interval.

Remark 3.2 (Positivity of g in (5)): Assuming the
existence of a global relative degree for system (1) already
implies that g in (5) cannot attain the value zero, hence it
must be sign-definite; it is therefore either globally positive
or globally negative. All the results here hold of course true
also when g is negative (just interchange the roles of U+ and
U−), but the sign must be known a priori in order that the
presented bang-bang funnel controller works. However, if the
sign of g is not known one could add a second larger safety
distance (as trigger for the switching logic) and the roles of U+

and U− are interchanged whenever the error hits the smaller
safety distance. This second safety distance must be designed
such that if the sign of g is guessed right at the beginning,
the smaller safety distance will never be hit and, if the sign
is guessed wrongly, then the smaller safety distance is such
that the error remains within the funnel when the right U+

and U− values are used. The corresponding adjustments of
the feasibility assumptions are straightforward and therefore
omitted.

IV. FEASIBILITY ASSUMPTIONS AND MAIN RESULT

A. Conditions on the funnel boundaries

We have to assume that the funnel boundaries initially are
large enough to contain the initial error with a “safe” distance,
i.e.

(F3) e(i)(0)∈ [ϕ−i (0)+ε−i , ϕ
+
i (0)−ε+

i ], i = 0, . . . , r−1.
The funnel boundaries have to be at least as smooth as the
corresponding error signal evolving within it, hence we make
the following smoothness and boundedness assumptions on
the funnel boundaries.

(F4) ϕ+
i , ϕ

−
i ∈ Wr−i,∞(R≥0 → R), i = 0, 1, . . . , r − 1,

in particular, ϕ±i and its derivatives are bounded.
Since the control objective is to keep the error signal within

the corresponding funnel, the error must be able to decrease or
increase at least as fast as the funnel boundary, hence we have
to choose the funnel F1 large enough such that it contains
the derivatives ϕ̇±0 of the funnel boundaries ϕ±0 of F0. An
analogous condition must also hold for the funnels Fi and
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t

e(t)

q1 ≡ true q1 ≡ false q1 ≡ true

t

ė(t)

q2 ≡ true q2 ≡
false
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true q2 ≡ false q2 ≡

true
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false
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true
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t
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Fig. 4: Schematic illustration of the closed-loop behavior of the bang-bang funnel controller for relative degree three case and constant
funnel boundaries ; the desired increase rate λ+

1 = λ−
1 > 0 and λ+

2 = λ−
2 > 0 are drawn with , the desired regions for e(i) in Fi are

highlighted as well as the safety region (given by ε+0 = ε−0 > 0 and ε+1 = ε−1 > 0 drawn with ; ε±2 > 0 is so small that it is not shown).

the derivatives of their boundaries. Furthermore, the desired
increase/decrease rate λ±i for the error signal e(i−1) must be
consistent with the funnel Fi. Additionally, the safety regions
are not allowed to overlap. Altogether, we obtain the following
feasibility assumption.

(F5) ∀t ≥ 0 : ϕ+
0 (t) − ε+

0 > ϕ−0 (t) + ε−0 and ∀i ∈
{1, . . . , r − 1}:
ϕ+
i (t)− ε+

i > ε−i +

max{(ϕ−0 )(i)(t), (ϕ−1 )(i−1)(t), . . . , ϕ̇−i−1(t), λ+
i },

ϕ−i (t) + ε−i < −ε+
i +

min{(ϕ+
0 )(i)(t), (ϕ+

1 )(i−1)(t), . . . , ϕ̇+
i−1(t),−λ−i }.

B. The settling times

For each block Bi we would like to ensure that the signal
e(i) is in the desired region (specified by ψi and qi) after a
specific time. Therefore, we have to assume the existence of
numbers ∆+

i > 0, ∆−i > 0 for i = 0, 1, . . . , r−1 and ∆+
r ≥ 0,

∆+
r ≥ 0 such that

(F6) ∆+
i ≥ ∆+

i+1+
‖ϕ+

i ‖∞ + ‖ϕ−i ‖∞
λ+
i+1

and ∆−i ≥ ∆−i+1+

‖ϕ+
i ‖∞ + ‖ϕ−i ‖∞

λ−i+1

, i = 0, . . . , r − 1,

as well as
(F7) ε+

i > ∆+
i+2‖ψ̇ − ϕ+

i+1‖∞ +
(‖ψ̇‖∞+‖ϕ+

i+1‖∞)2

2λ−i+2

, ψ ∈
{ϕ+

i , ϕ̇
+
i−1, . . . , (ϕ

+
0 )(i)}, for i = 0, 1, . . . , r− 2 and

ε−i > ∆−i+2‖ψ̇ − ϕ−i+1‖∞ +
(‖ψ̇‖∞+‖ϕ−i+1‖∞)2

2λ+
i+2

, ψ ∈
{ϕ−i , ϕ̇−i−1, . . . , (ϕ

−
0 )(i)}, for i = 0, 1, . . . , r − 2.

It will turn out that the feasibility assumption (F6) yields
(provided the other feasibility assumptions are satisfied) that
the numbers ∆±i are upper bounds of the settling times in
the sense that within a time-span of ∆±i the switching logic
of block Bi ensures that e(i) has reached the desired region
given by ψi and qi. The intuition of (F6) is then as follows:

Assume we already know that the block Bi+1 ensures that
e(i+1)(t) is at least −λ−i+1 (if qi is true) or at most λ+

i+1 (if qi
is false) after the corresponding settling time ∆−i+1 or ∆+

i+1.

Then it takes an additional time of at most ‖ϕ
+
i ‖∞+‖ϕ−i ‖∞

λ−i+1

or ‖ϕ
+
i ‖∞+‖ϕ−i ‖∞

λ+
i+1

for the error signal e(i) to move from the

upper funnel boundary ϕ+
i to the lower funnel boundary ϕ−i

or vice versa and definitely reaching the desired region on its
way.

In general, larger values for the settling times yield larger
overshoots. Hence the safety distances must be large enough
to prevent the signals e(i) leaving its corresponding funnel,
resulting in the above feasibility assumption (F7).

Note that for i = r − 1 the additional parameters λ+
r > 0

and λ−r > 0 appear in (F6) and (F7). These parameters reflect
the maximal rate for the increase and decrease of the error
signal e(r−1), which can be directly influenced by the input
(due to the relative degree assumption, see the next section).
Furthermore, note that we can allow λ±1 = 0 and ∆±0 = ∆±1 =
∞, because the settling times of the blocks B0 and B1 don’t
play any role in (F7) and in the forthcoming analysis.

C. Feasibility of U+ and U−

Up to now the feasibility assumptions did not depend on the
system (apart from the structural assumptions in Section II-B)
or on the actual input values U+ and U−. The final feasibility
assumption basically says that U+ should be large enough and
that U− should be small enough in order to achieve the control
objectives. What “large or small enough” means depends,
firstly, on the necessary increase/decrease rates λ±r coming
from the previous feasibility assumption (in particular on the
shapes of the funnels) together with the following feasibility
assumption, which ensures that the increase/decrease rate for
e(r−1) suffices to keep e(r−1) within the last funnel Fr−1 and
the specified regions.
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(F8) λ+
r > max{ϕ̇−r−1(t), ϕ̈−r−2(t), . . . , (ϕ−0 )(r)(t)} and
−λ−r < min{ϕ̇+

r−1(t), ϕ̈+
r−2(t), . . . , (ϕ+

0 )(r)(t)} for
all t ≥ 0.

The necessary size for the input depends, secondly, on how
fast yref changes and, thirdly, of course on the system itself.
For example, the closer the positive function g in (5) gets to
zero the bigger the amplitude of the input must be. Altogether
this yields the final feasibility assumption.

(F9) U+ ≥ λ+
r + y

(r)
ref (t)− f(y0

t , y
1
t , . . . , y

r−1
t , zt)

g(y0
t , y

1
t , . . . , y

r−1
t , zt)

and

U− ≤ −λ
−
r + y

(r)
ref (t)− f(y0

t , y
1
t , . . . , y

r−1
t , zt)

g(y0
t , y

1
t , . . . , y

r−1
t , zt)

for

all t ≥ 0, (y0
t , y

1
t , . . . , y

r−1
t ) ∈ Φyref

t , zt ∈ Zyref
t ,

where Rr ⊇ Φyref
t :={

(y0, . . . , yr−1)

∣∣∣∣∣ ∀i ∈ {0, 1, . . . , r − 1} :

yi−y(i)
ref (t)∈ [ϕ−i (t), ϕ+

i (t)]

}
(12)

and Zyref
t :=z(t)
∣∣∣∣∣∣∣∣∣∣
z solves ż = h(y, ẏ, . . . , y(r−1), z),

z(0) = z0, for some z0 ∈ Z0 and

some y ∈ Cr−1 with (y(τ), . . . ,

y(r−1)(τ)) ∈ Φyref
τ , τ ∈ [0, t]

, (13)

where Z0 ⊆ Rn−r is the set of possible initial values
for the z-system in (5).

Note that the structural assumption (6) ensures that Zyref
t is

well defined and bounded when Z0 is bounded, however the
latter is not assumed here and neither is it assumed that Zyref

t

is uniformly bounded in t.

D. The main result

We are now in the position to formulate our main result of
this work, which states that the above feasibility assumptions
are sufficient for the applicability of the proposed bang-bang
funnel controller.

Theorem 4.1 (The bang-bang funnel controller works):
Consider the non-linear system (1) satisfying (F1) with known
relative degree r > 0, a reference signal yref satisfying (F2),
the funnels Fi given as in (3) via the funnel boundaries
ϕ+
i and ϕ−i , i = 0, 1, . . . , r − 1 satisfying (F4) – (F7) and

the bang-bang funnel controller given by the switching logic
defined in Section III driven by the error e = y − yref. If the
initial values2 e(0), ė(0), . . . , e(r−1)(0) are “safely” contained
within the corresponding funnels, i.e. (F3) holds, and the input
values U+, U− are large enough in the sense of (F8) and
(F9) then the closed loop as in Figure 2 has a global solution
(x, q) : [0,∞) → Rn × {true, false} such that q has only
locally finitely many switches and the error and its derivatives
evolve within the funnels, i.e. e(i)(t) ∈ [ϕ−i (t), ϕ+

i (t)] for all
t ≥ 0 and all i ∈ {0, 1, . . . , r − 1}.

The proof is carried out in Section VI which itself is based
on the well posedness result in Section V.

2due to the structural assumption (F1) the initial values
e(0), ė(0), . . . , e(r−1)(0) are given by x0 and do not depend on u(0).

E. Satisfiability of the feasibility assumptions

On a first glance the feasibility assumptions look rather
technical and it is also not immediately clear whether they
are satisfiable at all. The next result resolves this issue.

Theorem 4.2 (Feasibility): Consider a funnel F0 given by
ϕ+

0 and ϕ−0 satisfying (F0
3), (F0

4), (F0
5) (see Corollary 3.1).

Then there exist funnels Fi given by ϕ±i , i = 1, . . . , r − 1,
and parameters ε±i ∈ R≥0, i = 0, . . . , r − 1, λ±i ∈ R, i =
1, . . . , r such that the feasibility assumptions (F3)–(F8) hold.
If, in addition, the internal dynamics given by the z-system in
(5) are BIBS with respect to the inputs y, ẏ, . . . , y(r−1), the
set of initial values Z0 is bounded and y

(j)
ref is bounded for

j = 0, 1, . . . , r then (F9) is satisfied for large enough U+ and
−U−.

Proof: For the proof of the first claim we split (F6) and
(F7) each into two sufficient conditions:

(Fa6) ∆+
i+1 < ∆+

i and ∆−i+1 < ∆−i for i = 0, . . . , r − 1.

(Fb6) λ+
i+1 ≥

‖ϕ+
i ‖∞+‖ϕ−i ‖∞
∆+

i −∆+
i+1

and λ−i+1 ≥
‖ϕ+

i ‖∞+‖ϕ−i ‖∞
∆−i −∆−i+1

for i = 0, . . . , r − 1.
(Fa7) ∆+

i+1 <
ε+i−1

2‖ψ̇−ϕ+
i ‖∞

, ψ ∈ {ϕ+
i-1, ϕ̇

+
i-2, . . . , (ϕ

+
0 )(i−1)},

i = 1, 2, . . . , r − 1, and ∆−i+1 <
ε−i−1

2‖ψ̇−ϕ−i ‖∞
, ψ ∈

{ϕ−i−1, ϕ̇
−
i−2, . . . , (ϕ

−
0 )(i−1)}, i = 1, 2, . . . , r − 1,

(Fb7) λ+
i+1≥

(‖ψ̇‖∞+‖ϕ−i ‖∞)2

ε−i−1

, ψ∈{ϕ−i-1, ϕ̇−i-2, . . . , (ϕ−0)(i-1)},

i = 1, . . . , r − 1, and λ−i+1 ≥
(‖ψ̇‖∞+‖ϕ+

i ‖∞)2

ε+i−1

, ψ ∈
{ϕ+

i−1, ϕ̇
+
i−2, . . . , (ϕ

+
0 )(i−1)}, i = 1, 2, . . . , r − 1.

Assumptions (F0
3) and (F0

5) ensure existence of ε+
0 , ε
−
0 ∈ R>0

such that Assumptions (F3) and (F5) hold for i = 0. Further-
more, choose ∆+

0 > 0, ∆−0 > 0 arbitrary and let, for notational
convenience, λ+

0 = λ−0 = 0.
Inductively, assume now that, for some i ∈ {0, 1, . . . , r−2}

we have already chosen ϕ±j , ε±j , ∆±j and λ±j for j = 0, 1, . . . , i
such that (F3), (F4) and (F5) hold up to the index i, (F6) holds
up to index i− 1 and (F7) holds up to index i− 2.

We can now choose ∆+
i+1 > 0 and ∆−i+1 > 0 small enough

such that (Fa6) and (Fa7) hold for the index i. Afterwards we
can choose λ±i+1 large enough such that (Fb6) and (Fb7) hold
for the index i. Choose any ε+

i+1 > 0 and ε−i+1 > 0, then we
can choose a wide enough funnel Fi+1 given by sufficiently
smooth (according to (F4)) boundaries ϕ+

i+1 and ϕ−i+1 such
that (F3) and (F5) for the index i+ 1 are satisfied. Altogether
we were able to find ϕ±j , ε±j , ∆±j and λ±j for j = 0, 1, . . . , i+1
such that (F3), (F4) and (F5) hold up to the index i+ 1, (F6)
holds up to index i and (F7) holds up to index i− 1.

Finally we can choose ∆r = 0 and λr sufficiently large
such that (Fb6), (Fb7) and (F8) holds.

In order to show that (F9) is satisfied for large enough U+

and −U−, we first observe that the boundedness assumption
on yref together with boundedness of the funnel boundaries
ensures that Φyref

t is uniformly bounded in t. Now the BIBS-
assumption together with boundedness of Z0 implies bound-
edness of Zt uniformly in t. Altogether, there exists compact
sets Y ⊆ Rr and Z ⊆ Rn−r such that Φyref

t ⊆ Y and Zt ⊆ Z
for all t ≥ 0. Continuity of f and g imply that f is bounded
in magnitude on the compact set Y ×Z, say by f > 0, and g
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is bounded away from zero on Y × Z, say by g > 0. Hence
any U− and U+ with

U+ >
λr + ‖y(r)

ref ‖∞ + f

g
and U− <

−λr − ‖y(r)
ref ‖∞ − f
g

will make (F9) true.
Remark 4.3 (Competing control objectives): Although The-

orem 4.2 shows that the error funnel F0 can nearly be arbitrary,
it should be clear that more strict control objectives will lead
to very large values for the input and also fast switching.
Furthermore, following the proof of Theorem 4.2 might yield
very conservative values for U±. An overestimation of the
sufficient input values can be avoided by allowing time-varying
safety distances ε+

0 , ε
−
0 . The problem of a constant safety

distance is most apparent when a fast transient behavior is
desired which is expressed with large values of ϕ̇±0 (t) together
with high demands on the tracking accuracy, expressed by
a small value of ϕ+

0 (t) − ϕ−0 (t) for t � 0. The latter
enforces the safety distance ε±0 to be small as well. However,
a small safety distance will give the error not much time
to “turn the corner” which is a particular problem when the
funnel boundary shrinks rapidly (i.e. fast transient behavior is
desired). Often the funnel boundaries decrease monotonically
and the highest rate of change of the funnel boundaries is at the
beginning where also the size of the funnel boundary is large.
Hence in this situation a much larger safety distance would
be possible. In our theoretical results we haven’t formalized
the possibility for a time-varying safety distance, because the
proofs are already technical enough. However, an illustration
of using a time-varying safety distance can be found in the
case study [14].

V. WELL-POSEDNESS OF THE CLOSED LOOP

The closed loop as shown in Figure 1a is a hybrid system,
i.e. it consists of continuous dynamics governed by (1) and
discrete dynamics given by the switching logic (9). Hence it
is not clear in general whether for any initial value (x0,q0) ∈
Rn × {true, false}r with q0 = (q0

1 , q
0
2 , . . . , q

0
r−1, q

0) and
any reference signal yref there exists at least a local solution
(e, q) : [0, ω) → R × {true, false} for some ω > 0. The
following lemma shows that right-continuity of the switching
signal q in the open loop alone suffices to show existence of
a local maximally extended solution of the closed loop.

Lemma 5.1 (Right-continuity & well-posedness, cf. [13]):
Consider system (1) satisfying (F1) with the controller (8)
governed by some switching signal q which is generated
by some causal3 switching logic Lyref : y 7→ q. Let Y ⊆
{ y : [0, ω)→ R | 0 < ω ≤ ∞ } be a function space which
contains all possible outputs of (1) for arbitrary locally inte-
grable inputs u (we do not exclude finite escape time at this
point). If for every y ∈ Y defined on [0, ωy) the resulting
switching signal q is right-continuous then the closed loop

3In general, causality does not allow q(t) to depend on the deriva-
tives y(i)(t), however because of the normal form (5) the values
ẏ(t), . . . , y(r−1)(t) do not depend on q(t). Hence in the present situation,
causality does not exclude that q(t) depends on ẏ(t), . . . , y(r−1)(t)

consisting of (1), (8) and Lyref is well posed, i.e. for every ini-
tial value x0 ∈ Rn there exists a maximally extended solution
(x, q) : [0, ω)→ Rn × {true, false}, 0 < ω ≤ ωy ≤ ∞.

Proof: The proof is straight-forward and identical to the
one in [13, Lem. A.1] and therefore omitted.

Note that Lemma 5.1 does not exclude Zeno behavior, i.e. it
is not excluded yet that the switching times accumulate and the
solution stops at the accumulation point. However, it excludes
the appearance of so-called Filippov solutions [2] or sliding
modes, because for each initial value there is a (local) classical
solution starting at this initial value.

The following lemma shows that the DLS (11) induced by
the elementary switching predicate S given by (10) produces
right-continuous outputs provided the switching triggers are
continuous and do not intersect. This is an essential property
which will be used together with Lemma 5.1 to show the well-
posedness of the closed loop from Figure 1a.

Lemma 5.2 (Property of the DLS induced by S): Consider
the DLS (11) on some interval [t0, t1) ⊆ R with some q0 ∈
{true, false}. Assume e, e, e : [t0, t1) → R are continuous
and, additionally,

∀t ∈ [t0, t1) : e(t) > e(t). (14)

Then (11) has a unique solution q : [t0, t1)→ {true, false}
which is right-continuous, i.e. for all t ∈ [t0, t1) there exists
ε > 0 such that q is constant on [t, t + ε). Furthermore, the
jumps of q cannot accumulate within any compact subset of
[t0, t1), in particular, q(t−) := limε↘0 q(t − ε) is for all t ∈
(0, ω) well defined.

Proof: By construction, for any fixed t ∈ [t0, t1), qnew :=
S(e(t), e(t), e(t), qold) 6= qold if, and only if, qold = false

and the upper trigger is hit, i.e. e(t) ≥ e(t), or qold = true

and the lower trigger is hit, i.e. e(t) ≤ e(t). By continuity
of e, e, e and by (14) it follows that qnew 6= qold implies that
S(e(t+τ), e(t+τ), e(t+τ), qnew) = qnew for all small enough
τ > 0. In particular, there exists ε > 0 such that any q :
[t0, t1) → {true, false} with either q

∣∣
[t0,t0+ε) ≡ true or

q
∣∣
[t0,t0+ε) ≡ false solves the DLS (11) on [t0, t0+ε). Choose

the maximal ε > 0 such that the constant q
∣∣
[t0,t0+ε) solves the

DSL (11). This implies that at the time t + ε a trigger was
hit, i.e. q(t+ ε) 6= q((t+ ε)−) and we now can continue the
solution by a constant value again. Hence we have shown that
we can extend the solution onto a maximal interval [t0, ω). It
remains to show that ω = t1. Seeking a contradiction, assume
ω < t1 which implies ω <∞. Let δ := e(ω)− e(ω) > 0. By
continuity of e, e, e there exists ε > 0 such that

∀t ∈ (ω − ε, ω] : |e(t)− e(ω)| < δ/2,

|e(t)− e(ω)| < δ/4, |e(t)− e(ω)| < δ/4.

This implies that either e(t) > e(t) for all t ∈ (ω − ε, ω] or
e(t) < e(t) on (ω − ε, ω], hence there can be at most one
jump of q on (ω − ε, ω). Therefore q(ω−) is well defined
and yields a unique q(ω) which can be, as above, extended.
This contradicts maximality of ω. In particular, this shows that
the jumps of q cannot accumulate in any compact subset of
[t0, t1), whence, q(t−) is well defined for all t ∈ [t0, t1).
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In order to use Lemma 5.1, observe that the normal form
(5) of system (1) implies that for any locally integrable
input function u the output y is r − 1 times continuously
differentiable, hence the output space Y is contained in the set
of all such y : [0, ω)→ R with ω ∈ (0,∞]. We are now able
to formulate sufficient conditions which ensure well-posedness
of the closed loop.

Theorem 5.3 (Well-posedness of the closed loop): Consider
the non-linear system (1) satisfying (F1) with known relative
degree r > 0, a reference signal yref satisfying (F2), the funnels
Fi given as in (3) via the funnel boundaries ϕ+

i and ϕ−i ,
i = 0, 1, . . . , r − 1 satisfying (F4), (F5) and the bang-bang
funnel controller given as in Section III driven by the error e =
y−yref. Then the closed loop as in Figure 1a has for all initial
values x0 ∈ Rn, q0 ∈ {true, false}r a unique maximally
extended solution (x, q) : [0, ω)→ Rn×{true, false}, ω ∈
(0,∞]. Furthermore, q has in each compact interval within
[0, ω) only finitely many jumps.

Proof: Due to Lemma 5.1 it suffices to show that the
switching logic S induces a causal operator Lyref : y 7→ q such
that for all possible outputs y the resulting switching signal
q is right-continuous. First note that the open-loop output y
of (1) for any locally integrable input u fulfills y ∈ Y :={
y : [0, ω)→ R

∣∣ ω ∈ (0,∞], y ∈ Cr−1
}

. Hence, invoking
(F2), also e ∈ Y , in particular, e(i) is continuous for i =
0, 1, . . . , r − 1.

We will carry out an inductive argument to show that for
all j ∈ {1, . . . , r− 1} the following claim holds: There exists
a sequence (tk)k∈N with t0 = 0 and tk → ω for k →∞ such
that qj

∣∣
[tk,tk+1) is constant, ψj ∈ Cr−j−1

pw with

ψj =
∑
k∈N

(θk)[tk,tk+1)

and θk ∈ Cr−j−1([0,∞) → R) fulfills either θk ∈
{(ϕ+

0 )(j), (ϕ+
1 )(j−1), . . . , ϕ̇+

j−1} if qj
∣∣
[tk,tk+1) ≡ true or

θk ∈ {(ϕ−0 )(j), (ϕ−1 )(j−1), . . . , ϕ̇−j−1} otherwise.
To show this claim for j = 1, consider a fixed error signal

e ∈ Cr−1([0, ω) → R). Lemma 5.2 together with (F4) and
(F5), applied to i = 0, yields that the DLS for q1 in the B0-
block has a unique solution q1 : [0, ω) → {true, false}
for which there exists a strictly increasing sequence (tk)k∈N
with t0 = 0 and tk → ω as k → ∞ such that q1

∣∣
[tk,tk+1) is

constant. Therefore ψ1 ∈ Cr−2
pw , in particular

ψ1 =
∑
k∈N

(θk)[tk,tk+1),

where θk ∈ Cr−2([0,∞)→ R) is either ϕ̇+
0 if q1 = true on

the corresponding interval or ϕ̇−0 otherwise.
Assume that the above claim holds for the index j. To

show the claim for j + 1 consider the block Bj on the
extended intervals [tk, tk+1 + ε) where ε > 0 and with
input θk instead of ψj . Then Lemma 5.2 applied to each
extended interval [tk, tk+1 + ε) together with (F5) (applied
to index i = j) implies that the DLS of Block Bj yields
a unique right-continuous solution qkj+1 on [tk, tk+1 + ε)
for all initial values qkj+1(tk−). Furthermore, qkj+1 has only
finitely many jumps on the compact interval [tk, tk+1] and

qkj+1(tk+1−) is well defined. Choosing inductively as initial
condition qk+1

j+1 (tk+1−) = qkj+1(tk+1−) we see that

qj+1 :=
∑
k∈N

(qkj+1)[tk,tk+1)

is the unique solution of the DLS in block Bj with inputs qj
and ψj . Since qj+1 has finitely many jumps in each compact
interval, there exists a sequence (sk)k∈N with sk → ω as
k →∞ such that qj+1

∣∣
[sk,sk+1) is constant. Consequently, the

second output ψj+1 ∈ Cr−jpw of the block Bi can be written as

ψj+1 =
∑
k∈N

(ηk)[sk,sk+1)

where ηk ∈ Cr−i fulfills either

ηk ∈ {(ϕ+
0 )(j+1), (ϕ+

1 )(j), . . . , ϕ̈+
j−1, ϕ̇

+
j }

if qj+1

∣∣
[sk,sk+1) ≡ true or

ηk ∈ {(ϕ−0 )(j+1), (ϕ−1 )(j), . . . , ϕ̈−j−1, ϕ̇
−
j }

if qj+1

∣∣
[sk,sk+1) ≡ false.

This proves the claim.
Applying the above arguments a last time to the block Br−1

results in a right-continuous unique solution q : [0, ω) →
{true, false} of the DLS in Br−1 which has in each
compact interval within [0, ω) only finitely many jumps.

VI. PROOF OF THE MAIN RESULT

In order to prove Theorem 4.1 we rewrite the definition of
the switching logic S in a recursive way (see also Figure 2):

S : e 7→ q := S1

(
ė,B0(e)

)
= S1(ė, q1, ψ1), (15)

where, for i = 1, . . . , r − 2,

Si : (e(i), qi, ψi) 7→ q := Si+1

( d
dte

(i),Bi(e
(i), qi, ψi)

)
= Si+1(e(i+1), qi+1, ψi+1), (16)

and, finally,

Sr−1 : (e(r-1), qr-1, ψr-1) 7→ q := Br−1(e(r-1), qr-1, ψr-1).

We will inductively consider the closed loop as shown in
Figure 5 and prove certain properties thereof. The basic idea
is to reduce inductively the relative degree by taking the
derivative of the output signal and using the corresponding
switching logic Si with some additional input signals.

The following definition captures a desired property, “fea-
sibility”, of the intermediate switching logic Si in the closed
loop as in Figure 5. Afterwards we will show two things:
1) the feasibility assumptions (F1) – (F9) from Section IV
in combination with the design of the switching logic as in
Section III ensure that each Si is feasible, and 2) feasibility of
Si, i = 1, . . . , r− 1, yields that our main result, Theorem 4.1,
holds.

Definition 6.1 (Feasibility of Si): Consider the closed loop
from Figure 1a satisfying the well-posedness conditions from
Theorem 5.3. For i ∈ {1, 2, . . . , r − 1} and fixed reference
signal yref consider the map Pi : u 7→ e(i) where e := y− yref
and y is the output of system (1) for the given input u and some
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Fεi (t0) ⇒ ∀t ∈ [t0, t1) : e(i)(t) ∈ [ϕ−i (t), ϕ+
i (t)], (17a)

Cqi ∧ Wr−i
ψi

∧ F−,εi (t0) ⇒ ∀t ∈ [t0, t1) : e(i)(t) ∈ [ϕ−i (t),min{ψi(t),−λ−i }], (17b)

C¬qi ∧ Wr−i
ψi

∧ F+,ε
i (t0) ⇒ ∀t ∈ [t0, t1) : e(i)(t) ∈ [max{ψi(t), λ+

i }, ϕ+
i (t)], (17c)

Cqi ∧ Wr−i
ψi

∧ t1 − t0 > ∆−i ⇒ ∃t ∈ [t0, t0 + ∆−i ] : e(i)(t) ≤ min{ψi(t),−λ−i } − ε+
i , (17d)

C¬qi ∧ Wr−i
ψi

∧ t1 − t0 > ∆+
i ⇒ ∃t ∈ [t0, t0 + ∆+

i ] : e(i)(t) ≥ max{ψi(t), λ+
i }+ ε−i , (17e)

ẋ = F (x) +G(x)u

y = H(x)
+

−yref

( d
dt )

i e(i)

Si

qi ψiU+U−

y e

e(i)q

u

Pi

Fig. 5: Intermediate closed loop composed of system Pi and switch-
ing logic Si utilized to prove the main result.

initial condition x(0) = x0 ∈ Rn. The switching logic Si (in
the loop with Pi) together with (qi, ψi) are called feasible with
settling times ∆+

i ,∆
−
i ∈ R≥0 if, and only if, the following

properties (i) and (ii) hold.
(i) In the case i < r − 1: Si+1 (in the loop with Pi+1)

together with (qi+1, ψi+1) = Bi(e
(i), qi, ψi) is feasible

with settling times ∆+
i+1,∆

−
i+1 ∈ R≥0, where e(i) :

[0, ω) → R denotes any solution of the closed loop Si
and Pi.

(ii) For given (qi, ψi) let q, e and e(i) be the corresponding
solutions of the closed loop composed of Pi, Si and (8).
Introduce the following (logical) abbreviations for some
interval [t0, t1) ⊆ R≥0:

F[0,t0) :=

 e, ė, . . . , e
(r−1) evolve within the

corresponding funnels Fj ,
j = 0, . . . , r − 1, on [0, t0)

 ,
Fi−1

[t0,t1) :=

 e, ė, . . . , e
(i−1) evolve within the

corresponding funnels Fj ,
j = 0, . . . , i− 1, on [t0, t1)

 ,
Cqi :=

[
qi is constantly true on [t0, t1)

]
,

C¬qi :=
[
qi is constantly false on [t0, t1)

]
,

Wr−i,∞
ψi

:=
[
ψi ∈ Wr−i,∞([t0, t1)→ R)

]
,

F+,ε
i (t0) :=

[
e(i)(t0) ∈ [ max{ψi(t0), λ+

i }+ ε−i ,

ϕ+
i (t0)− ε+

i ]

]
,

F−,εi (t0) :=

[
e(i)(t0) ∈ [ϕ−i (t0) + ε−i ,

min{ψi(t0),−λ−i } − ε+
i ]

]
,

Fεi (t0) :=
[
e(i)(t0)∈ [ϕ−i (t0) + ε−i , ϕ

+
i (t0)− ε+

i ]
]
.

Then for any interval [t0, t1) ⊆ [0, ω) for which F[0,t0)

and Fi−1
[t0,t1) hold the implications (17a)–(17e) are true.

The feasibility property is best understood by having a look
at Figure 6.

In order to prove that the switching logics Si are feasible
we need the following technical result.

Lemma 6.2 (Overshoot bound, [14, Cor. 6.2]): Assume
η : [t0, t2] → R is twice differentiable and let a continuous
ψd : [t0, t1) → R be such that η̇(t) ≤ ψd(t) for all
t ∈ [t0, t1) ⊆ [t0, t2]. Furthermore, assume there exists
λ > 0 such that η̈(t) ≤ −λ for all t ∈ [t1, t2). Then, for
every absolutely continuous ψ : [t0, t2] → R with essentially
bounded derivative and ε := ψ(t0) − η(t0) > 0, it holds that
η(t) < ψ(t) for all t ∈ [t0, t2] if

ε := ψ(t0)−η(t0)>(t1−t0)‖ψ̇−ψd‖∞+
(‖ψd‖∞ + ‖ψ̇‖∞)2

2λ
.

Lemma 6.3 (Feasibility of Si): Consider the closed loop
from Figure 1a satisfying (F1) – (F9). For some initial values
x0 ∈ Rn, q0 ∈ {true, false}r let the maximally extended
solution, including the internal signals (qi, ψi), be defined on
[0, ω) (whose existence is guaranteed by Theorem 5.3). Then
the internal switching logics Si, i = 1, 2, . . . , r − 1 together
with (qi, ψi) and settling times ∆+

i ,∆
−
i are feasible.

Proof: We prove this lemma by induction, beginning at
i = r − 1.

Step 1: Feasibility of Sr−1.
Consider an interval [t0, t1) for which Fr−2

[t0,t1) and F[0,t0) hold.
Step 1a: We show (17a) for i = r − 1.

As shown in the proof of Theorem 5.3, ψr−1 is piecewise-
continuous with

ψr−1 =
∑
k∈N

(θk)[sk,sk+1), 0 = s0 < s1 < s2 < . . . < ω (18)

and θk ∈ C0([0,∞) → R) fulfills either θk ∈
{(ϕ+

0 )(r−1), (ϕ+
1 )(r−2), . . . , ϕ̇+

r−2} if qr−1

∣∣
[tk,tk+1) ≡ true or

θk ∈ {(ϕ−0 )(r−1), (ϕ−1 )(r−2), . . . , ϕ̇−r−2} otherwise. Invoking
(F5) for i = r − 1, the definition of Br−1 together with (8)
yields the following implications for all t ∈ [t0, t1):

e(r−1)(t) ≥ ϕ+
r−1(t)− ε+

r−1 ⇒ u(t) = U−,

e(r−1)(t) ≤ ϕ−r−1(t) + ε−r−1 ⇒ u(t) = U+.
(19)

Invoking Fεr−1(t0) we may assume existence of t̂ ∈ [t0, t1)
such that e(r−1)(t) ∈ [ϕ−r−1(t) + ε−r−1, ϕ

+
r−1(t) − ε+

r−1]
for all t ∈ [t0, t̂]. Due to Fr−2

[t0,t1) and F[0,t0) it holds that
(y(t), ẏ(t), . . . , y(r−1)(t)) ∈ Φyref

t and, invoking (F1), z(t) ∈
Zyref
t for all t ∈ [0, t̂]. Now if u(t) = U− for some t ∈ [t0, t̂]
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Fi

t

ϕ+
i (t)

ϕ+
i (t)− ε+i

ϕ−
i (t)

ϕ−
i (t) + ε−i

λ+i

−λ−i

qi(t) = true qi(t) = false qi(t) = true

min{ψi(t),−λ−i }

max{ψi(t), λ
+
i }

min{ψi(t),−λ−i }

e(i)(0)
d
dte

(i) ≤ −λ−i+1

≤ ∆−i+1

≤ ∆−i

≤ ∆+
i

false
trueqi+1(t)

Fig. 6: An illustration for understanding the feasibility property of the switching logic Si together with (qi, ψi) in the intermediate closed
loop as shown in Figure 5. Condition (17a) ensures that e(i) remains within the funnel Fi (provided the initial value e(i)(t0) was safely
contained in Fi), conditions (17b) and (17c) ensure that e(i) remains within the bluely shaded regions as long as initially e(i)(t0) was safely
contained in the corresponding region; finally, conditions (17d) and (17e) ensure that within a time span of length at most ∆±

i the signal
e(i) reaches the bluely shaded region. Additionally, the output qi+1 of the block Bi is indicated.

then

e(r)(t) = −y(r)
ref (t) + f

(
y(t), ẏ(t), . . . , y(r−1)(t), z(t)

)
+ g
(
y(t), ẏ(t), . . . , y(r−1)(t), z(t)

)
U−

and (F9) yields e(r)(t) ≤ −λ−r
(F8)
< ϕ̇+

r−1 and, analogously,

u(t) = U+ implies e(r)(t) ≥ λ+
r

(F8)
> ϕ̇−r−1. Whence, (19)

yields that the time-varying region

Fεr−1 :=

{
(t, er−1) ∈ [t0, t1)× R

∣∣∣∣∣ ϕ−r−1(t) + ε−r−1 ≤ er−1

≤ ϕ+
r−1(t)− ε+

r−1

}
⊆ Fr−1

is positively invariant for e(r−1) on [t0, t1), i.e. the graph
t 7→

(
t, e(r−1)(t)

)
remains within Fεr−1 for t0 ≤ t ≤ t1 if

(t0, e
(r−1)(t0)) ∈ Fεr−1.

Step 1b: We show (17b) and (17c) for i = r − 1.
It suffices to show (17b) because (17c) can be shown analo-
gously. Invoking Cqr−1 , the definition of the switching logic
of block Br−1 together with (8) yields immediately for all
t ∈ [t0, t1) the implications

e(r−1)(t) ≥ ψr−1(t)− ε+
r−1 ⇒ u(t) = U−,

e(r−1)(t) ≤ ϕ−r−1(t) + ε−r−1 ⇒ u(t) = U+.

Analogously as in Step 1 and invoking W1,∞
ψr−1

, u(t) = U−

implies

e(r)(t) ≤ −λ−r
(F8)
< min{ϕ̇+

r−1(t), ϕ̈+
r−2(t), . . . , (ϕ+

0 )(r)(t)}
(18)
≤ ψ̇(t)

and u(t) = U+ implies

e(r)(t) ≥ λ+
r

(F8)
> ϕ̇−r−1(t).

Hence, the region{
(t, er−1)

∣∣ t ∈ [t0, t1), er−1 ∈ [ϕ−r−1(t), ψ(t)]
}

is positively invariant for e(r−1) on [t0, t1) and (17b) for i =
r − 1 is shown.

Step 1c: We show (17d) and (17e) for i = r − 1.
Again it suffices to show (17d) because (17e) can be
shown analogously. Choose a minimal t̂ ∈ [t0, t1) such that
e(r−1)(t̂) ≤ min{ψr−1(t̂),−λ−r−1} − ε+

r−1 if it exists and
t̂ = t1 otherwise. Seeking a contradiction assume t̂ − t0 >
∆−r−1. In particular, t̂ > t0 and therefore e(r−1)(t̂) ≥
min{ψ(t̂),−λ−r−1} − ε+

r−1. Because of Cqr−1
the switching

logic Sr−1 yields q(t) = true on [t0, t̂), hence u(t) = U−

on [t0, t̂) and as in Step 1a

∀ t ∈ [t0, t̂) : e(r)(t) ≤ −λ−r . (20)

Therefore, we arrive at the following contradiction,

min{ψ(t̂),−λ−r−1} − ε+
r−1 ≤ e(r−1)(t̂)

(20)
≤ e(r−1)(t0)− λ−r (t̂− t0)

Step 1a
≤ ‖ϕ+

r−1‖∞ − λ−r ∆−r−1

(F6)
≤ ‖ϕ+

r−1‖∞ − (‖ϕ+
r−1‖∞ + ‖ϕ−r−1‖∞) ≤ ϕ−r−1(t̂)

(F5),(18)
< min{ψ(t̂),−λ−r−1} − ε+

r−1.

Step 2: We show that feasibility of Si+1 implies feasibility
of Si.
Consider an interval [t0, t1) for which Fi−1

[t0,t1) and F[0,t0) hold
and assume Si+1 is feasible.

Step 2a: We show (17a).
Seeking a contradiction, assume that e(i) leaves the funnel Fi,
i.e. there exists a minimal s1 ∈ (t0, t1) such that e(i)(s1) =
ϕ+
i (s1) or e(s1) = ϕ−i (s1). It suffices to consider the first

case, the second case follows analogously.
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The choice of s1 together with F[0,t0) implies Fi[0,s1),
hence feasibility of Si+1 together with (F3) yields Fi+1

[0,s1). By
definition, feasibility of Si+1 also implies feasibility of Si+2,
. . . , Sr−1, so we can repeat the previous argument to conclude
that F[0,s1) holds. In particular, the implications (17) for the
index i+1 are true for any interval [s0, s1) with 0 ≤ s0 < s1.

From Fεi (t0) it follows that there exists s0 ∈ [t0, s1) such
that e(i)(s0) = ϕ+

i (s0)−ε+
i and ε+

i ≥ ϕ+
i (s)−e(i)(s) > 0 for

all s ∈ [s0, s1). The switching logic Si ensures (independently
of qi and ψi, due to (18) and (F5)) that ψi+1 = ϕ̇+

i ∈
Wr−(i+1) and qi+1 ≡ true on [s0, s1), i.e. Wr−(i+1)

ψi+1
and

Cqi+1
are true for the interval [s0, s1).

In the following we show that e(i+1)(s) >
min{ψi+1(s),−λ−i+1} − ε+

i+1 for all s ∈ [s0, s1). Seeking
a contradiction, assume the contrary for some s ∈ [s0, s1),
then feasibility of Si+1 together with (17b) yield that
e(i+1)(t) ≤ ψi+1(t) = ϕ̇+

i (t) for all t ∈ [s, s1). In
particular, d

dt (ϕ
+
i − e(i))(t) ≥ 0 on [s, s1), i.e. ϕ+

i − e(i)

is monotonically increasing on [s, s1), which contradicts
ϕ+
i (s)− e(i)(s) > 0 = ϕ+

i (s1)− e(i)(s1).
Hence e(i+1)(s) > min{ψi+1(s),−λ−i } − ε+

i+1 and the
switching logic Si+1 yields qi+2 ≡ true on [s0, s1) and
ψi+1 = ϕ̇−i ∈ Wr−(i+1),∞ if i < r − 2 and qr := q ≡ true

on [s0, s1) if i = r − 2. Therefore, (17d) and (17b) for Si+2

(if i < r − 2) or (F8) and (F9) (if i = r − 2, see also the
arguments from Step 1a) ensure that e(i+2)(t) ≤ −λ−i+2 for
all t ∈ [s0 + ∆−i+2, s1).

In summary, we have shown that e(i+1)(t) ≤ ϕ+
i+1(t) for

all t ∈ [s0, s0 + ∆−i+2] ∩ [s0, s1) and e(i+2)(t) ≤ −λ−i+2 for
all t ∈ [s0 + ∆−i+2, s1). Invoking

ϕ+
i (s0)− e(i)(s0) = ε+

i

(F7)
> ∆−i+2‖ϕ̇+

i − ϕ+
i+1‖+

(‖ϕ̇+
i ‖∞ + ‖ϕ+

i+1‖∞)2

2λ−i+2

Lemma 6.2 then implies

∀t ∈ [s0, s1] : e(i)(t) < ϕ+
i (t),

whence the sought contradiction 0 = ϕ+
0 (s1)− e(s1) > 0.

Step 2b: We show (17b) and (17c).
These properties can be shown analogously as in Step 2a by
replacing the upper bound ϕ+

i by ψi if qi ≡ true or by
replacing the lower bound ϕ−i by ψi if qi ≡ false.

Step 2c: We show (17d) and (17e).
We only show (17d) because (17e) follows analogously.
Choose a minimal t̂ ∈ [t0, t1) such that e(i)(t̂) ≤
min{ψi(t̂),−λ−i } − ε+

i if it exists and t̂ = t1 otherwise. If
t̂ ≤ t0+∆+

i+1+
‖ϕ+

i ‖∞+‖ϕ−i ‖∞
λ+
i+1

then, by (F6), t̂ ≤ t0+∆+
i and

there is nothing to show; therefore, seeking a contradiction,
assume the contrary. Note that then t0 < t̂ and hence
e(i)(t̂) ≥ min{ψi(t̂),−λ−i } − ε+

i . If Cqi and Wr−i
ψi

hold then
it follows that the switching logic Si produces qi+1 ≡ true

and ψi+1 = ψ̇i ∈ Wr−(i+1) on [t0, t̂). Therefore, (17b) and
(17d) of Si+1 imply that e(i+1)(t) ≤ −λ−i+1 on [t0 + ∆−i+1, t̂].

Hence we arrive at the sought contradiction

min{ψi(t̂),−λ−i } − ε+
i = e(i)(t̂)

≤ e(i)(t0 + ∆−i+1)− (t̂− (t0 + ∆−i+1))λ−i+1

< ‖ϕ+
i ‖∞ − (‖ϕ+

i ‖∞ + ‖ϕ−i ‖∞) ≤ ϕ−i (t̂)
(F5)
< max{ψi(t̂),−λ−i } − ε+

i ,

where we used e(i)(t0 + ∆−i+1) ≤ ϕ+
i (t0 + ∆−i+1) < ‖ϕ+

i ‖∞
which follows from Step 2a.

We are now able to prove the main result.
Proof of Theorem 4.1: Due to Theorem 5.3 there

exists a maximally extended solution for the error signal
e ∈ Cr−1([0, ω) → R), the switching signal q : [0, ω) →
{true, false} and the internal signals ψi : [0, ω) → R,
qi : [0, ω) → {true, false}, i = 1, . . . , r − 1. Furthermore,
Lemma 6.3 shows that the intermediate switching logics
Si in connection with (ψi, qi) are feasible in the sense of
Definition 6.1.

Step 1: We show e(i)(t) remains within the corresponding
funnels on [0, ω).
For i = 0 this follows analogously as in Step 1a (if r = 1) or
Step 2a (if r > 1) in the proof of Lemma 6.3. Inductively,
the feasibility of Si together with (F3) implies e(i)(t) ∈
[ϕ−i (t), ϕ+

i (t)] for all t ∈ [0, ω). In particular, (F4) implies
that e(i), i = 0, 1, . . . , r − 1, are bounded on [0, ω).

Step 2: We show ω =∞.
Seeking a contradiction, assume ω <∞, then the continuous
signals y(i)

ref , i ∈ {0, . . . , r − 1}, are bounded on the compact
interval [0, ω]. Hence boundedness of e(i) as shown in Step 1
yields that y(i), i = 0, . . . , r−1 are bounded on [0, ω). By (6)
in (F1) it follows that system (5) or, equivalently, (1) can not
have a finite escape time. Therefore, ω <∞ is only possible if
the switchings of q1, q2, . . . , qr−1 or q accumulate as t→ ω.

Inductively, we will first show that each signal qi, i =
1, . . . , r − 1, can not have an accumulation of switching
times as t → ω. Seeking a contradiction, assume that the
switching times of q1 form an increasing sequence (tk)k∈N
with tk → ω. This implies that e(tk) = ϕ+

0 (tk) − ε+
0 and

e(tk+1) = ϕ−0 (tk+1) + ε−0 for either all even k ∈ N or all odd
k ∈ N, without loss of generality consider k ∈ N even in the
following. Note that tk+1 − tk → 0 as k →∞.

Due to compactness of the interval [0, ω] and (F5) there
exists δ > 0 and ε > 0 such that ϕ+

0 (t) − ε+
0 − (ϕ−0 (s) +

ε−0 ) ≥ δ for all s, t ∈ [0, ω] with |s − t| < ε. Hence e(tk) −
e(tk+1) ≥ δ for all even k sufficiently large. Then the Mean
Value Theorem yields the existence of t̂k ∈ [tk, tk+1] such that
ė(t̂k) = e(tk+1)−e(tk)

tk+1−tk ≤ −δ/(tk+1 − tk). Since tk+1 − tk →
0 as k → ∞ this contradicts boundedness of ė. Therefore,
the switching times of q1 do not accumulate as t → ω. In
particular, there exists t ∈ [0, ω) such that q1 is constant on
[t, ω). Assuming for the inductive argument that q1, q2, . . . , qi
are constant on [t, ω) for some t ∈ [0, ω), analogous arguments
show that also qi+1 cannot have an accumulation of switching
times toward ω.

Finally, to show that q does not have an accumulation
of switching times as t → ω, we first have to observe
that boundedness of y, ẏ, . . . , y(r−1), boundedness of z and
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(F10) ∆+
r ≥ τq , ∆−r ≥ τq and, for all t ≥ 0, ε+

r−1 > (τe + τd)E
+
[t,t+τe+τq ] and ε−r−1 > (τe + τd)E

−
[t,t+τe+τq ], where

E+
[t,t+τe+τq ] := sup

s∈[t,t+τe+τq ],zs∈Zyref
s

(y0s ,y
1
s ,...,y

r−1
s )∈Φ

yref
s

−y(r)
ref (s) + f(y0

s , y
1
s , . . . , y

r−1
s , zs) + g(y0

s , y
1
s , . . . , y

r−1
s , zs)U

+ − ϕ̇+
r−1(s),

E−[t,t+τe+τq ] := sup
s∈[t,t+τe+τq ],zs∈Zyref

s

(y0s ,y
1
s ,...,y

r−1
s )∈Φ

−yref
s

y
(r)
ref (s)− f(y0

s , y
1
s , . . . , y

r−1
s , zs)− g(y0

s , y
1
s , . . . , y

r−1
s , zs)U

− + ϕ̇−r−1(s),

boundedness of u implies by continuity of f and g in (5) that
also y(r) is bounded on [0, ω). Hence the same arguments
as above also show that q has no accumulation of switching
times.

Altogether this shows ω = ∞ and, in particular, q has
locally finitely many switches.

VII. TIME DELAYS IN THE FEEDBACK LOOP

An analysis of the arguments carried out in Section VI
reveals that the settling times play the role of a “time delay”
in the intermediate closed loop with Si as shown in Figure 5,
i.e. only after the settling time ∆±i+1 has passed we know that
the corresponding signal e(i) decreases/increases fast enough
such that the funnel Fi cannot be left. This behavior made it
necessary to introduce the safety distances ε±i and (F7). Hence
this approach already includes some kind of time delay; we
will formalize this intuition in this section.

Due to the normal form induced by (F1) the error signal
e(r) can be directly influenced by the choice of the input signal
as shown in Step 1a of the proof of Lemma 6.3. Hence the
intermediate closed loop driven by Sr−1 has no inherent time
delay, i.e. ∆±r = 0. For this reason ε+

r−1 and ε−r−1 can be set to
zero and the main result in Theorem 4.1 still holds. However,
in practical applications, there might be a time delay between
the moment the corresponding switch-trigger is hit and the
moment the switching logic reacts on this event. Furthermore,
there might be an additional time delay between the switching
logic and the actual input signal. Reasons for these time
delays might be that the (digital) controller is connected via
a communication network with delays, the test whether the
switching triggers are hit might be sampled, or the switching
logic itself needs some time to evaluate the new input signal.
Altogether a feedback loop with (constant) time delays τe and
τq as shown in Figure 7 is a more realistic setup.

Switching
logic S

delay
τe

delay
τq +

ẋ = F (x) +G(x)u

y = H(x)
y

−yref

FunnelU+U−

ee(· − τe)qq(· − τq)

u

Fig. 7: The closed loop with additional time delays τe for the error
signal e and τq for the switching signal q.

With only a slight change of the feasibility assumption (F7)
into

(Fτe7 ) ε+
i > (∆+

i+2 + τe)‖ψ̇ − ϕ+
i+1‖∞ +

(‖ψ̇‖∞+‖ϕ+
i+1‖∞)2

2λ−i+2

, ψ ∈ {ϕ+
i , ϕ̇

+
i−1, . . . , (ϕ

+
0 )(i)},

i = 0, 1, . . . , r − 2, and
ε−i > (∆−i+2 + τe)‖ψ̇ − ϕ−i+1‖∞ +
(‖ψ̇‖∞+‖ϕ−i+1‖∞)2

2λ+
i+2

, ψ ∈ {ϕ−i , ϕ̇−i−1, . . . , (ϕ
−
0 )(i)},

i = 0, 1, . . . , r − 2,

and the new feasibility assumption (F10) we obtain the same
result as in Theorem 4.1 even when considering time delays.

Theorem 7.1 (Bang-bang funnel controller & time delays):
Consider the nonlinear system (1) and the bang-bang funnel
controller as in Section III with additional time delays as
shown in Figure 7. Let the feasibility assumptions (F1) –
(F9) with (F7) replaced by (Fτe7 ) and the additional feasibility
assumption (F10) be satisfied. Then the bang-bang funnel
controller works, i.e. there exists a global solution of the
closed loop such that q has locally finitely many switches and
the error and its derivatives evolve within the corresponding
funnels, i.e. e(i)(t) ∈ [ϕ−i (t), ϕ+

i (t)] for all t ≥ 0 and all
i = 0, 1, . . . , r − 1.

Proof: The well-posedness result from Theorem 5.3 re-
mains valid without any modification. The remaining proof is
very much the same as the proof of Theorem 4.1 in Section VI,
the only difference is that in (17d) and (17e) the settling times
∆±i are replaced by ∆±i + τe and in Step 1 of the proof of
Lemma 6.3 the following implications have to be taken into
account

e(r−1)(t0) = ϕ+
r−1(t0)− ε+

r−1

⇒ ∀t ∈ [t0, t0 + τe + τq] : e(r−1)(t) ≤ ϕ+
r−1(t),

e(r−1)(t0) = ϕ−r−1(t0) + ε−r−1

⇒ ∀t ∈ [t0, t0 + τe + τq] : e(r−1)(t) ≥ ϕ−r−1(t).

Note that, in general, the expressions for E±[t,t+τe+τq ] cannot
be simplified with the help of (F9) because the latter is used
to establish a lower bound for |e(r)| while the former uses an
upper bound for |e(r)|.

Remark 7.2 (Feasibility and time delays): A similar state-
ment as in Theorem 4.2 is in general not possible when time
delays are present, i.e. given some funnel for the error fulfilling
(F0

4), (F0
5) and time delays τe, τd it is not always possible to

construct funnel boundaries such that the feasibility conditions
are fulfilled. However, the feasibility construction according
to the proof of Theorem 4.2 reveals the maximal size of the
“settling times” ∆±r which give an upper bound on the time
delay τq . In particular, it gives a guideline on the necessary
sampling rate of the switching logic.



14

VIII. RELATIVE DEGREE FOUR SIMULATION

In this section we carry out simulations for a relative
degree four example, where we take time delays due to the
time sampling into account. To circumvent the problem of
competing control objectives as highlighted in Remark 4.3
and also to simplify the feasibility assumptions we consider
constant funnel boundaries; in particular, the transient behavior
is not in the focus of this simulation. As an academic example
we consider the following nonlinear system

y(4) = z
...
y 2 + ezu, y(i)(0) = y

(i)
ref (0), i = 0, . . . , 3,

ż = z(a− z)(z + b)− cy, z(0) = 0,
(21)

where a, b, c ∈ R are parameters of which only the following
bounds are known: 0 < a ≤ 0.1, 0 < b ≤ 0.1, |c| ≤ 0.01.
Note that the system with zero input and for c > 0 will exhibit
finite escape time if

...
y (0) 6= 0. As reference signal we choose

yref(t) = 5 sin(t) which satisfies (F2). We choose the funnels,
the bang-bang funnel controller parameters and the settling
times as follows:

ϕ+
0 = −ϕ−0 ≡ 1, ε+

0 = ε−0 = 0.9,

ϕ+
1 = −ϕ−1 ≡ 0.5, ε+

1 = ε−1 = 0.1,

ϕ+
2 = −ϕ−2 ≡ 0.5, ε+

2 = ε−2 = 0.1,

ϕ+
3 = −ϕ−3 ≡ 4.5, ε+

3 = ε−3 = 0.1,

∆+
0 = ∆−0 =∞,

λ+
1 = λ−1 = 0, ∆+

1 = ∆−1 = ∆±0 /2 =∞,
λ+

2 = λ−2 = 0.2, ∆+
2 = ∆−2 = 0.4,

λ+
3 = λ−3 = 4, ∆+

3 = ∆−3 = 0.1,

λ+
4 = λ−4 = 102, ∆+

4 = ∆−4 = 0.0001.

Note that for simplicity we have chosen constant funnels,
i.e. we only illustrate the “steady state” performance and
not the transient behavior. In particular, the internal signals
ψ1, ψ2, . . . , ψr−1 of the switching logic are all identical zero.
It is not difficult to verify that the feasibility conditions (F3)-
(F8) are fulfilled. Note that these parameters do not depend on
the actual system. The only control parameters which depend
on the system are U+ and U−. In order to choose feasible
values for U+ and U− we have to find bounds for the terms
in (F9). First observe that, for all t ≥ 0,

Φyref
t ⊆

{ ( y0
y1
y2
y3

)
∈ R4

∣∣∣∣∣ |y0| ≤ 6, |y1| ≤ 5.5,

|y2| ≤ 5.5, |y3| ≤ 9.5

}
.

With Z0 = [−0.5, 0.5] it can now easily be verified that

Zyref
t ⊆ [−0.5, 0.5] ∀t ≥ 0.

Hence, for all t ≥ 0, (y0
t , y

1
t , y

2
t , y

3
t ) ∈ Φyref

t and zt ∈ Zyref
t ,

|zt(y3
t )2| ≤ 45.125 and ezt ≥ e−0.5 ≥ 0.6.

Altogether this guarantees that

U+ = −U− := 254 ≥ 102 + 5 + 45.125

0.6
≈ 253.54

is feasible (in the sense of (F9)) for the bang-bang funnel con-
troller. Finally for carrying out the simulation we have to check

the maximal step size in view of the time delay introduced by
the sampled time axis. The feasibility assumption (F10) yields
the following upper bound for the simulation step size h

h ≤ min

{
∆±4 ,

ε±3
‖y(4)ref ‖∞+‖z(y(3))2‖∞+‖ez‖∞U+‖ϕ̇±3 ‖∞

}
= min

{
10−4, 0.1

5+45.125+e0.5300+0

}
= 10−4.

The simulation where carried out with the step size h = 10−4

and the parameters of (21) are

a = 0.09, b = 0.05, c = 0.008.

The overall tracking accuracy is shown in Figure 8, which
clearly shows that the error follows the reference signal within
the specified error bounds (given by ϕ±0 ).

0 1
4
π 1

2
π 3

4
π π 5

4
π 3

2
π 7

4
π 2π

−6
−4
−2
0
2
4
6

Fig. 8: The bang-bang funnel controller applied to the nonlinear
relative degree four system (21): The output y follows the
reference signal yref within the prespecfied bounds ϕ±

0 , the
safety distance ε±0 is shown as .

The behavior of the bang-bang funnel controller in detail
is shown in Figure 9 where the error e(t) and its derivatives
ė(t), ë(t),

...
e (t) for t ∈ [0, 2π] are plotted. In addition the

internal switching variables q1(t), q2(t) and q3(t) are shown
as well as the resulting (external) switching signal q(t) which
determines directly u(t) via

u(t) =

{
U−, if q(t) = true,

U+, if q(t) = false,

The switching frequency of the input u(·) is locally up
to 103Hz and might seem high. However, it should be
noted that a relative degree four model in reality could arise
from modeling a mechanical system (relative degree two) in
combination with a model of the electro-mechanical actuator
(relative degree two). Since the electrical input is often realized
with a digital controller, a frequency of 103Hz should be no
problem.

IX. CONCLUSIONS

We have presented a novel control design for tracking of
arbitrary reference signals and for nonlinear systems of which
only the relative degree r > 0 and the sign of the “high
frequency gain” is known. The controller uses only two control
values (hence the name “bang-bang” funnel controller) and
the switching logic is easily implementable. Our proposed
controller assumes knowledge of the first r − 1 derivatives
of the error and can therefore be seen as a (partial) state
feedback controller. Due the technicalities of the proof it is
at the moment not clear whether adding a simple observer
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Fig. 9: The error and its derivatives with corresponding switching variables . The funnel boundaries are drawn as (note that the
funnel boundaries ϕ±

0 ≡ 1 are not in the picture), the safety distances are shown as .

to approximate the derivatives of the errors still works and
this is a question for future research. However, due to the
presence of the safety distance we believe that the bang-bang
funnel controller also works in the presence of small errors in
the measurement of the derivatives of the error; furthermore,
we have already shown that the bang-bang funnel controller
is robust with respect to time delays. Currently, the bang-
bang funnel controller uses a logic which produces only two
control values (corresponding to “decreasing” or “increasing”
certain signals), but a more detailed logic could improve the
performance of the closed loop. For example, one could add
a third region in the funnel around zero and use a “neutral”
value U0 which keeps the error signals constant; promising
experimental results using this idea are reported in [4]. Another
interesting question is how the ideas of the bang-bang funnel
controller can be generalized to also handle MIMO systems.
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APPENDIX
THE SWITCHING LOGIC FOR r = 1, r = 2 AND r = 3

For r = 1 the definition of S results (by “merging” the
definitions for S0 and Sr−1 in the right way) in the following
DLS:

q(t) = S
(
e(t), ϕ+

0 (t)− ε+
0 , ϕ

−
0 (t) + ε−0 , q(t−)

)
,

q(0−) = q0 ∈ {true, false},
for r = 2 we obtain

q1(t) = S
(
e(t), ϕ+

0 (t)− ε+
0 , ϕ

−
0 (t) + ε−0 , q1(t−)

)
,

q1(0−) = q0
1 ∈ {true, false},

q(t) =
S
(
ė(t),min{ϕ̇+

0 (t),−λ−1 } − ε+
1 , ϕ

−
1 (t) + ε−1 , q(t−)

)
,

if q1(t) = true,

S
(
ė(t), ϕ+

1 (t)− ε+
1 ,max{ϕ̇−0 (t), λ+

1 } − ε−1 , q(t−)
)
,

if q1(t) = false,

q(0−) = q0 ∈ {true, false},
and for r = 3

q1(t) = S
(
e(t), ϕ+

0 (t)− ε+
0 , ϕ

−
0 (t) + ε−0 , q1(t−)

)
,

q1(0−) = q0
1 ∈ {true, false},

q2(t) =
S
(
ė(t),min{ϕ̇+

0 (t),−λ−1 } − ε+
1 , ϕ

−
1 (t) + ε−1 , q2(t−)

)
,

if q1(t) = true,

S
(
ė(t), ϕ+

1 (t)− ε+
1 ,max{ϕ̇−0 (t), λ+

1 }+ ε−1 , q2(t−))
)
,

if q1(t) = false,

q2(0−) = q0
2 ∈ {true, false},

q(t) =

S
(
ë(t),min{ϕ̈+

0 (t),−λ−2 } − ε+
2 , ϕ

−
2 (t) + ε−2 , q(t−)

)
,

if q1(t) ∧ q2(t),

S
(
ë(t), ϕ+

2 (t)− ε+
1 ,max{ϕ̇−1 (t), λ+

2 }+ ε−2 , q(t−)
)
,

if q1(t) ∧ ¬q2(t),

S
(
ë(t),min{ϕ̇+

1 (t),−λ−2 } − ε+
1 , ϕ

−
2 (t) + ε−2 , q(t−)

)
,

if ¬q1(t) ∧ q2(t),

S
(
ë(t), ϕ+

2 (t)− ε+
1 ,max{ϕ̈−0 (t), λ+

2 }+ ε−2 , q(t−)
)
,

if ¬q1(t) ∧ ¬q2(t),

q(0−) = q0 ∈ {true, false}.
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