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Abstract

Averaging is a useful technique to simplify the analysis of switched systems. In this paper we present averaging results for the
class of systems described by switched differential algebraic equations (DAEs). Conditions on the consistency projectors are
given which guarantee convergence towards a non-switched averaged system. A consequence of this result is the possibility to
stabilize switched DAEs via fast switching. We also study partial averaging in case the consistency projectors do not satisfy the
conditions for convergence; the averaged system is then still a switched system, but is simpler than the original. The practical
interest of the theoretical averaging results is demonstrated through the analysis of the dynamics of a switched electrical circuit.

1 Introduction

Many dynamical systems present continuous and dis-
crete behavior; they are called hybrid systems [3]. A
switched system is a hybrid system consisting of a family
of dynamical subsystems and a policy that at each time
instant selects the active subsystem among a set of pos-
sible modes [8]. The selection policy is usually described
by means of a switching function, which here is assumed
to be a function of time (in contrast to state dependent
switching).

In this paper we study switched systems whose modes
are given by linear differential algebraic equations
(DAEs). Linear DAEs are a natural way of modeling
electrical circuit, simple mechanical systems or, in gen-
eral, (linear) systems with additional (linear) algebraic
constraints [7]. If this kind of systems change their
model during the time one obtains a switched system;
for example one can add (ideal) switches to an electrical
circuit or allow for sudden structural changes in me-
chanical systems. The potentially complex interaction
between the modes dynamics and the switching signal
complicates the analysis of switched models. A possible
approach to circumvent some of these difficulties, when
switchings occur at high frequencies, is to average the
hybrid dynamics over a time interval and to base the
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analysis and control design on the simpler averaged
system.

Averaging theory for switched systems has a big interest
in the control literature considering different approaches
and points of view related to the switched system
characteristics: non-periodic switching functions [1,14],
pulse modulations [17,12], dithering [4], effects of ex-
ogenous inputs [4], hybrid systems framework [21,22].
On the practical point of view, the averaging approach
is a widely used technique in the power electronics com-
munity since 1970s [16,13] and has been also applied
to other switched systems of practical interest, see [11]
and the references therein.

This paper has three major contributions: 1) We estab-
lish an averaging result for linear switched DAEs, 2) we
present a partial averaging result in case a smooth av-
eraged model does not exist and 3) we show how the
averaging result can be utilized to achieve stabilization
via fast switching. The averaging result is based on the
conference papers [6,5], but we were able to consider-
able relax the assumptions on the consistency projectors.
Commutativity is not necessary anymore; we consider
for each consistency projector Πi related to the generic
i-th mode, the Projector Assumption, (PA)

imΠ∩ ⊆ imΠi, (PA.1)

kerΠ∩ ⊇ kerΠi, (PA.2)

where Π∩ is the product of all the consistency projec-
tors. The partial averaging result builds upon our confer-
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ence paper [10] which considers only two modes; here we
present the result for arbitrarily many modes. The sta-
bilization procedure for switched DAE is via fast switch-
ing and the averaging technique is new, but there is a
strong connection to the results in [9]; in particular, [9,
Rem. 21] already discusses this connection and concludes
that the averaging technique may be more powerful be-
cause commutativity of the flows is not needed.

The paper is organized as following: in Section 2 we recall
some mathematical notions, present some concepts re-
garding switched ordinary differential equations (ODEs)
with jumps and some results from the theory of switched
DAEs. In Section 3 we present the averaging result for
switched DAEs; the stability analysis is carried out in
Section 4 resulting in a method for stabilization via fast
switching. In Section 5 the partial averaging result is
presented. The conclusions of the work are summarized
in Section 6.

2 Switched ODEs and switched DAEs

In the following subsections some preliminary definitions
are recalled. Furthermore, in order to present the av-
eraging technique, some results regarding the switched
ODEs and some concept of the theory of switched DAEs
are illustrated. In the sequel the following notation is
adopted: Rn is the set of n-th dimensional real vectors,
R+ is the set of nonnegative real numbers, N is the set
of nonnegatives integers, the product of any q matrices
{Mi}qi=1 is defined as (note the order)

q∏
i=1

Mi = MqMq−1, . . . ,M2M1,

‖·‖ is the Euclidean norm and ‖·‖∞ is the infinity norm.

Definition 1 (Lipschitz function) A function f(p) :
R+ → Rn is Lipschitz if there exists a positive constant
L such that ∀ p1, p2 the inequality

‖f(p1)− f(p2)‖ ≤ L‖p1 − p2‖

holds.

2.1 Big-O notation

Definition 2 (Big-O notation) Given any functions
f(p) : R+ → Rn and g(p) : R+ → R+, we say that f(p)
is an O(g(p)) function as p → 0 (f(p) = O(g(p)) for
short), if there exist positive constants α and p̄ such that

‖f(p)‖ ≤ αg(p), ∀p ∈ [0, p̄].

When g(p) is the identity function we indicate f(p) =
O(p). Clearly any linear combination of functions which

are O(p) is an O(p) itself. Moreover if f(p) is Lipschitz
then it is also O(p) but the converse does not necessarily
hold because Definition 2 does not require f(p) to be
continuous. If f(p) = O(p) than it f(0) → 0 as p → 0.
Given a compact set I ⊂ (0,∞), we say that

f(t)− g(t) = O(p), ∀t ∈ I

if the difference of two functions is O(p) uniformly in t,
i.e. the constant α is independent of t.

By considering the Taylor approximation we can write,
for any matrix M ∈ Rn×n and any s ∈ [0, p]

eMs = I +Ms+ O(p2) = I + O(p) (1)

where I is the identity matrix.

2.2 Definition and properties of projectors

Definition 3 (Projector) Let x ∈ Rn = V
⊕
W . The

linear operator ρV,W : Rn → Rn defined by

ρV,W (v + w) = v

where v ∈ V and w ∈W is called projection of x = v+w
onto V along W. The corresponding matrix Π ∈ Rn×n,
defined by v = Πx is called projector onto V along W .

Note that a matrix Π ∈ Rn×n is a projector if and only
if it is idempotent, i.e., Π2 = Π [15, Thm. 2.21].

Lemma 4 Let Π ∈ Rn×n be a projector and M ∈ Rn×n
then

imM ⊆ imΠ ⇔ ΠM = M,

kerM ⊇ kerΠ ⇔ MΠ = M.

PROOF. Necessity in both case is trivial. Since Π is
the identity on imΠ sufficiency for the first case is also
clear. Considering the transpose and orthogonal comple-
ments, sufficiency of the second case follows with analo-
gous arguments.

Corollary 5 If a family of projectors {Πi}qi=1 with

Π∩ :=

q∏
i=1

Πi (2)

satisfies the Projector Assumption (PA) then Π2
∩ = Π∩,

i.e. Π∩ itself is a projector.

Lemma 6 ([5, Lem. 2 & Lem. 3]) Let `(p) ∈ R+ →
N be such that p`(p) = O(1) and let Π : Rn×n be a
projector. Then

(Π + O(p))`(p) = O(1). (3)
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d1p

c1

d2p

c2

dqp

cq

tk = sk,1 sk,2 sk,3 sk,q tk+1tk−1

Fig. 1. Graphical representation of the time inter-
val [tk−1, tk+1], with tk = kp, tk+1 = kp + p,

sk,i := kp +
∑i−1

j=1 djp and ci :=
∑i

j=1 djp i = 2, . . . , q.

Furthermore, for any matrices M, M̃ ∈ Rn×n with

ΠMΠ = M = ΠM̃Π

it holds that

Π
((
Π + M̃p+O(p2)

)`(p) − (Π +Mp

+O(p2)
)`(p))

Π = `(p)O(p2). (4)

An interesting interpretation for `(p) in Lemma 6 is the
number of consecutive periods of length p inside a fixed
time interval [0,∆]. Indeed for this case `(p) tends to
infinity when p goes to zero but p`(p) = O(1).

2.3 Switched ODEs

Let σ : R+ → Σ be a piecewise constant right-
continuous function, that selects at each time instant
the index of the active mode from the finite index set
Σ := {1, 2, . . . , q}. In the sequel σ is called the switching
signal. Here we assume that σ is periodic with switching
period p > 0. The switching time instants are defined
as follows

tk := kp, k ∈ N, sk,i := tk +

i−1∑
j=1

djp, i ∈ Σ, (5)

where di ∈ (0, 1) is the duty cycle of the i-th mode, see
Figure 1; in particular

∑q
i=1 di = 1. Note that sk,1 = tk.

Then the switching signal can be written as

σ(t) =


1, t ∈ [tk, sk,2),

2, t ∈ [sk,2, sk,3),
...

q, t ∈ [sk,q, tk+1).

(6)

Let ci be the time interval between the beginning of any

period and the end of the i-th mode, i.e.

ci :=

i∑
j=1

djp, i ∈ Σ. (7)

Note that in the sequel we use ci with i = 0, . . . , q where
we assume c0 = 0, obviously it is cq = p.

A switched ODE with switching signal (5)–(6) and con-
tinuous input u : R+ → Rm is given by

ẇ(t) = Aσ(t)w(t) +Bσ(t)u(t), ∀t ∈ R+

with initial condition w(0−) = w0.

The averaged model for switched ODEs is given by

ẇav(t) =

q∑
i=1

di(Aiwav(t) +Biu(t)) (8)

where Ai ∈ Rn×n and Bi ∈ Rn×m, see [13].

Dealing with the approximation properties between the
averaged system and the switched system, it is possible
to show that the approximation is of order of the period
p assuming that the two systems have the same initial
conditionw0 and that the exogenous input u is bounded,
differentiable and with bounded derivative, [12]. No fur-
ther assumptions on the matrices Ai and Bi are needed
for this approximation result.

2.4 Switched ODEs with jumps

The averaging analysis for switched DAEs which we
present in the next sections is based on some properties
of the solution of switched ODEs where the state con-
tains jumps.

A switched ODE with switching signal (5)–(6), contin-
uous input u : R+ → Rm, jump input v : R+ → Rn and
discontinuous state variable w ∈ Rn is given by

ẇ(t) = Aσ(t)w(t) +Bσ(t)u(t), ∀t 6= sk,i ∧ t ∈ R+

w(s+
k,i) = Πσ(sk,i)w(s−k,i) +Qσ(sk,i)v(sk,i),

(9)
with initial condition w(0−) = w0 ∈ Rn, k ∈ N, and
i ∈ Σ. The first equation in (9) describes the dynamics in
the different modes, while the second equation represents
the jump rule at the switching time instants.

The switched ODE (9) can be rewritten in terms of the
modes

ẇ(t) = Aiw(t) +Biu(t), t ∈ (sk,i, sk,i+1)

w(s+
k,i) = Πiw(s−k,i) +Qivsk,i ,

w(0−) = w0

3



with vsk,i = v(sk,i), k ∈ N, i ∈ Σ, the switching times
given by (5) and matrices Ai ∈ Rn×n, Bi, Qi ∈ Rn×m
and the projectors Πi ∈ Rn×n.

In the following Lemma we express the solution of (9)
evaluated at the multiplies of the switching period in a
compact form depending on the initial conditions and
on the input.

Lemma 7 Consider the switched ODE (9) and switch-
ing times given by (5). There exist matrices H(p), N(p)
and an operator I(p) such that every solution of (9) sat-
isfies

w(t−k ) = H(p)w(t−k−1)+N(p)vk−1+I(p){uk−1} ∀k ∈ N
(10)

where uk−1 indicates the input function on the time in-
terval (tk−1, tk) translated into the time interval (0, p):

uk−1 : [0, p]→ Rm, ξ 7→ u(ξ + tk−1),

and

vk−1 :=


vsk−1,1

vsk−1,2

...

vsk−1,q

 .

In particular,

w(t−k ) = H(p)kw0 +

k−1∑
i=0

H(p)k−1−i(N(p)vi+I(p){ui}).

(11)

PROOF. The solution of the switched ODE on the
interval (sk−1,q, tk) evaluated at t−k is given by

w(t−k ) = eAqdqpw(s+
k−1,q) +

∫ tk

sk−1,q

eAq(tk−ξ)Bqu(ξ)dξ.

(12)
Furthermore

w(s+
k−1,q) = Πqw(s−k−1,q) +Qqvsk−1,q

(13)

where w(s−k−1,q) is the solution on the interval

(sk−1,q−1, sk−1,q) evaluated at s−k−1,q.

Substituting the solution w(s−k−1,q) in (13) and then

in (12), and by iterating for all q modes one obtains the
linear discrete time system

w(t−k ) = H(p)w(t−k−1) +N(p)vk−1 + I(p){uk−1} (14)

with solution (11), where

H(p) =

q∏
i=1

eAidipΠi (15a)

I(p){uk−1} =

q∑
i=1

q∏
j=i+1

eAjdjpΠj×

×
∫ ci

ci−1

eAi(ci−ξ)Biuk−1(ξ)dξ (15b)

N(p) =
[ q∏
i=1

(eAidipΠi)Q1

q∏
i=2

(eAidipΠi)Q2 . . .

eAqdqpQq

]
(15c)

and ci are given by (7) with i ∈ Σ.

The solution of (9) with w0 = 0, under some conditions,
is an O(p) function as shown in the following Lemma.

Lemma 8 Consider the switched ODE (9) with initial
condition w(0−) = 0 and switching times given by (5).
Consider any given interval [0,∆] where ∆ ∈ R+, and
assume that the following conditions hold

(i) u(t) = O(p), ∀t ∈ [0,∆],
(ii) vsk,i = O(p), ∀k ∈ N, i ∈ Σ,

(iii) Π∩ given by (2), is a projector,
(iv) ΠiQi−1 = 0, i ∈ Σ with Q0 := Qq.

Then w(t) = O(p), ∀t ∈ [0,∆].

PROOF. The solution of (9) is given by (11) where
w0 = 0. Let `(p) be the number of consecutive periods
of length p inside [0,∆], i.e., ∆ − p < p`(p) ≤ ∆. Note
that p`(p) = O(1). Taking into account that Π2

1 = Π1,
the expression (11) can be rewritten as

w(t−k ) =

k−2∑
i=0

H(p)k−1−i(Π1N(p)vi +Π1I(p){ui})

+N(p)vk−1 + I(p){uk−1}.

for k = 2, . . . , `(p) and the same expression without the
first sum for k = 1. By using (1) in (15a) and (15c) we
obtain

H(p) = Π∩ + O(p),

N(p) =
[
ΠqΠq−1 · · ·Π2Q1 + O(p) . . . Qq + O(p)

]
,

and by invoking the assumption (iv),

N(p) = O(p).
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Furthermore, invoking (iii) and (3),

H(p)k−1 = O(1), k = 1, . . . , `(p).

Finally, taking into account the general bound ‖
∫ b
a
f‖ ≤

(b− a)‖f‖∞ and using (1) in (15b), it follows

I(p){ui} = O(p)‖ui‖∞ = O(p2), i = 0, . . . , `(p)− 1

where we also used (i).
Hence it follows, together with assumptions (i) and (ii),

w(t−k ) = (k − 1)O(p2) + O(p2),

for k = 1, . . . , `(p). Since `(p)O(p2) = O(p) from the
equation above we obtain

w(t−k ) = O(p) as well as w(t+k ) = O(p), (16)

for k = 1, . . . , `(p). It remains to be shown that w(t) =
O(p) for t ∈ (tk, tk+1) with k = 1, . . . , `(p). The solution
of (9) for any τ ∈ [sk,i, sk,i+1) and for any i ∈ Σ can be
written as follows

w(τ) = eAi(τ−sk,i)w(s+
k,i) +

∫ τ

sk,i

eAi(τ−ξ)Biu(ξ)dξ.

Considering the Taylor expression (1) with s = τ − sk,i
and by applying (i) we have

w(τ) = (I + O(p))w(s+
k,i) + O(p2) = w(s+

k,i) + O(p).

(17)
By concatenating (17) for increasing values of i ∈ Σ and
by using (16) together with

w(s+
k,i) = Πiw(s−k,i) +Qivsk,i

= Πiw(s−k,i) + O(p),

∀i ∈ Σ; we obtain that w(τ) = O(p) ∀τ ∈ [tk, tk+1) and
k = 1, . . . , `(p), which completes the proof.

Remark 9 Lemma 8 is similar to classical input-to-
state-stability (ISS) results, in the sense that a small in-
put (of order O(p)) results in a small state (also O(p))
on any fixed time interval. Recently, an ISS result utiliz-
ing averaging for general hybrid systems has been inves-
tigated [22].

2.5 Switched DAEs

A non-homogeneous switched linear DAE is given by

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ R+ (18)

where x : R+ → Rn is the state, u : R+ → Rm is
the Lipschitz continuous input, x(0−) = x0 is the initial
condition and the switching signal σ is defined as in (5)–
(6).

The dynamic of each mode i of the system is given by
the following linear DAE

Eiẋ(t) = Aix(t) +Biu(t) (19)

where Ei, Ai ∈ Rn×n, Bi ∈ Rn×m are constant ma-
trices for each i ∈ Σ. All solutions of each mode evolve
within a consistency space that is a linear subspace of
Rn. The value x(s−k,i) just before a switching instant sk,i
is not necessarily in the consistency space of the mode
after the switch. Therefore it is necessary to allow solu-
tions with jumps; this leads to problems in evaluating
the derivative in (18). To resolve this problem we use the
distributional solution framework [18]. Furthermore, the
solutions of switched DAE can also contain Dirac im-
pulses (in addition to possible jumps), but in this paper
we only consider the impulse-free part of the solution
(jumps are still possible). Recently, some preliminary re-
sults concerning the convergence of the Dirac impulses
were obtained [19].

If the matrix pairs (Ei, Ai) are regular, i.e. m = n and
the polynomial det(sEi−Ai) is not the zero polynomial,
then the following result is well known:

Proposition 10 (Quasi-Weierstrass form) A ma-
trix pair (E,A) ∈ Rn×n × Rn×n is regular if and
only if there exist invertible transformation matrices
S, T ∈ Rn×n which put (E,A) into quasi Weierstrass
form

(SET, SAT ) =

([
I 0

0 N

]
,

[
J 0

0 I

])
(20)

where N ∈ Rn2×n2 , with 0 ≤ n2 ≤ n is a nilpotent
matrix, J ∈ Rn1×n1 with n1 = n − n2 is some matrix
and I is the identity matrix of the appropriate size.

Note that, the transformation matrices S and T can
easily be obtained via the so called Wong sequences,
see [2].

Definition 11 (Consistency projector, flow matrix)
Consider a regular matrix pair (E,A) and its quasi
Weierstrass form (20). The consistency projector Π of
(E,A) is given by

Π = T

[
I 0

0 0

]
T−1
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and the so called flow matrix Adiff of (E,A) is given by

Adiff = T

[
J 0

0 0

]
T−1.

Note that the flow matrix and the projectors do not
depend on the specific choice of T , furthermore it is easily
seen that Π2 = Π and

AdiffΠ = Adiff = ΠAdiff. (21)

Definition 12 (Differential and impulse projectors)
Consider a regular matrix pair (E,A) and its quasi
Weierstrass form (20). The differential projector Πdiff

of (E,A) is given by

Πdiff = T

[
I 0

0 0

]
S

and the impulsive projector Π imp of (E,A) is given by

Π imp = T

[
0 0

0 I

]
S.

Note that the differential and impulsive projectors do
not depend on the specific choice of T and of S, and they
are in general not idempotent matrices.

The role of projectors and the flow matrix becomes clear
with the following result.

Theorem 13 Consider the switched DAE (18) with reg-
ular matrix pairs (Ei, Ai) and corresponding flow matri-

ces Adiff
i and projectors Πi, Π

imp
i , Πdiff

i for i ∈ Σ. As-
sume that

Π imp
i Bi = 0, ∀i ∈ Σ. (22)

Then x : R→ Rn is the impulse free part of any (distri-
butional) solution of (18) if and only if x is a solution of
the switched ODE with jumps given by

ẋ(t) = Adiff
i x(t) +Bdiff

i u(t), ∀t ∈ (sk,i, sk,i+1)

x(s+
k,i) = Πix(s−k,i),

x(0−) = x0,
(23)

where Bdiff
i := Πdiff

i Bi, i ∈ Σ, k ∈ N.

PROOF. The (impulse-free) solution of (18) is
obtained by “concatenating” the solution of each

mode (19), that can be written as follows

x(t) = eA
diff
i (t−sk,i)x(s+

k,i) +

∫ t

sk,i

eA
diff
i (t−s)Πdiff

i Biu(s)ds

−
n−1∑
i=0

(Eimp
i )iΠ imp

i Biu(t)(i)

(24)

with Eimp
i := Π imp

i Ei and t ∈ (sk,i, sk,i+1). By us-
ing (22), the initial condition of the i-th mode is given
by the second equation in (23), where x(s−k,i) is the so-
lution of mode i− 1 evaluated at the time instant time
s−k,i. Then the proof directly follows by considering (24)

combined with (22).

Remark 14 Consider the switched DAE (18) with reg-
ular matrix pairs (Ei, Ai) and corresponding flow matri-
cesAdiff

i and consistency projectorsΠi for i ∈ Σ. Assume
that u(t) = 0 ∀t, i.e. (18) is an homogeneous switched
DAE. Then x is the impulse free part of any (distribu-
tional) solution of (18) if and only if x is a solution of
the switched ODE with jumps given by Theorem 13 where
u(t) = 0 ∀t, [20].

Remark 15 By using the same arguments of the pre-
vious section we can write the solution of the switched
ODE (23) at tk in a form similar to (11) with vi = 0 ∀i ∈
N; in particular

x(t−k ) = Hdiff(p)kw0 +

k−1∑
i=0

Hdiff(p)k−1−iIdiff(p){ui}.

(25)
where

Hdiff(p) =

q∏
i=1

eA
diff
i dipΠi, (26a)

Idiff(p){uk−1} =

q∑
i=1

q∏
j=i+1

eA
diff
j djpΠj×

×
∫ ci

ci−1

eA
diff
i (ci−ξ)Bdiff

i uk−1(ξ)dξ,

(26b)

with ci given by (7).

3 Averaging for switched DAEs

Averaging theory is based on the observation that a
rapidly time-varying system can be viewed as a small
perturbation of a simplified, time-invariant, averaged
system.

Given a switched DAE (18) with periodic switching sig-
nal σ with period p > 0 defined as in (5)–(6), if the

6



switching signal is faster than the variations of the con-
tinuous state space variable x, we could try to investi-
gate the possible existence of an averaged model. The
averaged system approximates the behavior of the sys-
tem; to the limit p → 0 the solution of the averaged
model converges to that of the switched system, i.e., the
error between the solutions of the averaged and switched
models is O(p).

We want to find conditions such that an averaged model
of (18) is given by

ẋav(t) = Aavxav(t) +Bavu(t), t ∈ R+

xav(0) = Π∩x0
(27)

where
Aav := Π∩A

diff
av Π∩

Bav := Π∩B
diff
av

Adiff
av :=

q∑
i=1

diA
diff
i

Bdiff
av :=

q∑
i=1

diB
diff
i


(28)

where di, i ∈ Σ, is the duty cycle of the i-th mode defined
by (5) and Π∩ is given by (2). The expressions (28) have
an elegant parallelism with the matrices in (8).

The solution of the averaged model at the multiples of
the period can be easily written as in (11)

xav(t−k ) = Hav(p)kΠ∩x0 +

k−1∑
i=0

Hav(p)k−1−iIav(p){ui}

(29)
with

Hav(p) = eAavp, (30a)

Iav(p){uk−1} =

∫ p

0

eAav(p−ξ)Bavuk−1(ξ)dξ. (30b)

Remark 16 The solution of the averaged model (27)–
(28) belongs to imΠ∩. Then if (PA) hold ∀i ∈ Σ and
taking into account Lemma 4, we have

xav(t) = Πixav(t), ∀t ∈ R+, ∀i ∈ Σ.

In the following subsections we present conditions for
which (27)–(28) represent an averaged model of (18) for
the homogeneous and non-homogeneous cases, respec-
tively.

3.1 Homogeneous switched DAEs

In the following example we consider a switched
DAE (18) with u(t) = 0 ∀t.

0d1p d2p p 2p 3p
0

0.05

0.1

x1

0d1p d2p p 2p 3p
−3

−2.5

−2

x2

0d1p d2p p 2p 3p
0

0.5

1

1.5

x3

0 5p 10p 15p
0

0.05

0.1

x1

0 5p 10p 15p
−3

−2.5

−2

x2

0 5p 10p 15p
0

0.5

1

1.5

x3

Fig. 2. Evolution of state variables (first component top, sec-
ond component middle, third component bottom) of Exam-
ple 17 for slow switching (p = 0.1s, left) and fast switching
(p = 0.02s, right). The averaging dynamics are plotted with
dotted black lines, while the trajectories of the switched DAE
are colored according to the active mode (mode 1 blue, mode
2 magenta, mode 3 green). Note that x3 is not O(p) on [0, p).

Example 17 Consider the following matrices

E1 =
[

0 1 0
1 0 1
0 0 0

]
, A1 =

[
8 −1 8
−1 2 −1
1 0 0

]
,

E2 =
[

1 0 0
0 1 0
0 0 0

]
, A2 =

[−10 −1 −10
−1 0 −1
0 0 1

]
,

E3 =
[

0 1 0
1 0 1
0 0 0

]
, A3 =

[−1 4 0
−4 −1 0
0 0 1

]
.

The averaged model (27) with duty cycles (d1, d2, d3) =
(0.2, 0.7, 0.1) is given by

ẋav =
[

0 0 0
0 0.2 0
0 0 0

]
xav, xav(0) = Π∩x0.

Π∩ =
[

0 0 0
0 1 0
0 0 0

]
.

In Figure 2 we show the evolutions of the system for initial
value x0 = (0.1,−2, 1.5)> and periodicities p = 0.1s and
p = 0.02s, respectively. It can be seen that the switched
DAE converge towards the averaged system.

According to the result of the Example 17, we want to
prove that under certain assumptions, the trajectories
of the switched system converge to those of the averaged
system (27)–(28) with u(t) = 0 when the switching pe-
riod p tends to zero.

Theorem 18 Consider the regular switched DAE (18)
with periodic switching signal σ with period p > 0 given
by (5)–(6) and initial condition x(0−) = x0, and consider
the averaged model (27)–(28). Assume that u(t) = 0 ∀t.
Denote by xσ,p(t) the (in general discontinuous) impulse-
free part of the (in general distributional) solution of (18)
with u(t) = 0 and let xav(t) be the (smooth) solution
of (27) with u(t) = 0. Consider an arbitrary constant

7



∆ > p. If (PA) hold ∀i ∈ Σ, then

xσ,p(t)− xav(t) = O(p), (31)

∀t ∈ [p,∆].

PROOF. The proof proceeds in three steps.

Step 1: We show that (31) holds for t = t1 = p.

Invoking Remark 14, the impulse-free part of the solu-
tion of (18) and the solution of (27) at t1 can be written
as

xσ,p(t
+
1 ) = Π1xσ,p(t

−
1 ) = Π1Hdiff(p)x0

xav(t1) = Hav(p)Π∩x0.

By taking into account the Taylor approximation (1)
together with (21), we have

Hdiff(p) = Π∩ + Ãp+ O(p2) = Π∩ + O(p) (32a)

Hav(p) = I +Aavp+ O(p2) = I + O(p), (32b)

where

Ã := Adiff
q Π∩dq +ΠqA

diff
q-1Πq-1 · · ·Π1dq−1 + . . .

+ΠqΠq-1 · · ·Π2A
diff
2 Π1d2 +Π∩A

diff
1 d1.

Then

xσ,p(t
+
1 )− xav(t1) = (Π1

(
Π∩ + O(p)

)
−
(
I + O(p)

)
Π∩)x0

=
(
Π1Π∩ −Π∩

)
x0 + O(p) = O(p).

(33)

where we used Π1Π∩x0 = Π∩x0 because of (PA.1).

Step 2: We show that (31) holds for any {tk}`(p)k=2 where
`(p) is the integer such that ∆− p < p`(p) ≤ ∆. Clearly
p`(p) = O(1).
By applying the Taylor approximation (1) to the solution
of the impulse-free part of the switched system, we have

xσ,p(t
+
k ) = Π1H

k
diff(p)x0

=
(
Π∩ + Ãp+ O(p2)

)k
x0

=
(
Π∩ + O(p)

)(
Π∩ + Ãp+ O(p2)

)k−2(
Π∩

+ O(p)
)
x0,

for k = 2, . . . , `(p). Taking into account (PA.1) together
with Lemma 4, and by applying (3) we obtain

xσ,p(t
+
k ) = Π∩

(
Π∩ + Ãp+ O(p2)

)k−2
Π∩x0 + O(p).

Invoking (1) and (3) we can rewrite the solution of the
averaged system (29) where Iav(p){uk} = 0 as

xav(tk) = Π∩
(
Π∩ +Aavp+ O(p2)

)k−2
Π∩x0 + O(p).

Hence, invokingΠ∩ÃΠ∩ = Π∩AavΠ∩ and (4), we arrive
at

xσ,p(t
+
k )− xav(tk) = Π∩

((
Π∩ + Ãp+ O(p2)

)k−2

−
(
Π∩ +Aavp+ O(p2)

)k−2
)
Π∩x0 + O(p) = O(p),

(34)

for k = 2, . . . , `(p).

Step 3: We show that (31) holds for time instants differ-
ent from multiples of the period p.

The solution of (18) and (27) for any τ ∈ [sk,i, sk,i+1)
with i ∈ Σ and k ∈ N, can be written respectively as

xσ,p(τ) = eA
diff
i (τ−sk,i)xσ,p(s

+
k,i) (35a)

xav(τ) = eAav(τ−sk,i)xav(sk,i). (35b)

Considering (1) with s = τ − sk,i we have

xσ,p(τ)− xav(τ) = xσ,p(s
+
k,i)− xav(sk,i) + O(p). (36)

Taking into account Remark 16 we can write

xσ,p(s
+
k,i)− xav(sk,i) = Πixσ,p(s

−
k,i)− xav(sk,i)

= Πi(xσ,p(s
−
k,i)− xav(sk,i)).

(37)

Then by concatenating (36) for increasing values of i ∈ Σ
and k = 1, . . . , `(p), and by using (33) and (34) it follows
that (31) holds ∀t ∈ [p,∆].

Example 19 The averaged model conjectured in Exam-
ple 17 can be now confirmed. Indeed the consistency pro-
jectors of the switched DAEs of Example 17 are given by

Π1 =
[

0 0 0
0 1 0
1 0 1

]
, Π2 =

[
1 0 0
0 1 0
0 0 0

]
, Π3 =

[
1 0 1
0 1 0
0 0 0

]
,

It is easily to see that (PA) hold for all Πi, i = 1, . . . , 3.
Hence Theorem 18 can be applied and the averaging result
holds.

Remark 20 Note that from Lemma 4 it follows that
commutativity of the consistence projectors, i.e.

ΠiΠj = ΠjΠi, ∀i, j ∈ Σ, (38)
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Fig. 3. Electrical circuit with two capacitors and one induc-
tor.

implies (PA.1) and (PA.2), hence our result generalizes
the one in [5]. In fact, by analyzing the consistency pro-
jectors in Example 19, we can see that they do not com-
mute but (PA) hold, i.e. the commutativity of the consis-
tency projectors is not necessary for averaging.

Remark 21 Theorem 18 makes a statement about the
switched DAE (18) where u(t) = 0 ∀t; however, it is also
applicable to switched ODE with jumps of the form (23)
with u(t) = 0. For this it is not necessary that Adiff

i and
Πdiff
i , i ∈ Σ, are defined in terms of regular matrix pairs

(Ei, Ai); it suffices that the following properties hold:
Π2
i = Πi, ΠiA

diff
i = Adiff

i = Adiff
i Πi, i ∈ Σ, i.e. Πi must

be projectors which are compatible with the correspond-
ing flow matrices Adiff

i . Then (PA) also ensures conver-
gence towards an averaged system for switched ODE with
jumps.

Remark 22 The Projector Assumption means that, dif-
ferently from the classical averaging result on switched
ODEs, the averaging result for swithed DAEs depends
on the sequence of modes because of the presence of Π∩
in (28). For instance, by considering in Example 17 the
sequence of modes 1, 3, 2 instead of 1, 2, 3, the condi-
tion (PA.1) is no more satisfied and convergence towards
the average system does not occur anymore.

3.2 Non-homogeneous switched DAEs

In the following we want to analyze the case of a switched
non-homogeneous DAE.

Example 23 Consider the switched capacitor circuit
shown in Figure 3. By applying the Kirchhoff’s laws to
the four different configurations obtained by combining
the different states of the two ideal switches, the system
can be described as a switched DAEs where the state vari-
ables are the voltage on the two capacitors and the current
through the inductor respectively, x = [vC1

, vC2
, iL]>.

i-th mode S1 S2

1 “closed” “open”

2 “closed” “closed”

3 “open” “closed”

4 “open” “open”

Table 1
Modes of the electrical circuit.

The matrices (Ei, Ai, Bi) are given by

E1 =
[
C1 0 0
0 C2 0
0 0 L

]
A1 =

[
0 0 1
0 − 1

R2
0

1 0 −R1

]
B1 =

[
0
0
1

]
,

E2 =
[
C1 C2 0
0 0 L
0 0 0

]
A2 =

[
0 − 1

R2
1

−1 0 −R1
1 −1 0

]
B2 =

[
0
1
0

]
,

E3 =
[
C1 C2 0
0 0 0
0 0 0

]
A3 =

[
0 − 1

R2
0

1 −1 0
0 0 1

]
B3 =

[
0
0
0

]
,

E4 =
[
C1 0 0
0 C2 0
0 0 0

]
A4 =

[
0 0 0
0 − 1

R2
0

0 0 1

]
B4 =

[
0
0
0

]
.

where the i-th mode is defined according to the positions
of the switches S1, S2 as indicated in Table 23.

Consider the following constants:

ρ1 =
C1

C1 + C2
ρ2 =

C2

C1 + C2
, (39)

then the differential projectors are

Πdiff
1 =

[
1/C1 0 0

0 1/C2 0
0 0 1/L

]
, Πdiff

2 =

 ρ1
C1

0 −
ρ2
1

R2C1

ρ1
C1

0 −
ρ2
1

R2C1

0 1/L ρ2

 ,
Πdiff

3 =

 ρ1
C1
−

ρ2
1

R2C1
0

ρ1
C1
−

ρ2
1

R2C1
0

0 0 0

 , Πdiff
4 =

[
1/C1 0 0

0 1/C2 0
0 0 0

]
.

The candidate averaged model (27)–(28) is given by the
following

ẋav(t) = Aavxav(t) +Bavu(t) xav(0) = Π∩x0,

Aav =

− ρ2
1

R2C1
−

ρ2
2

R2C1
0

−
ρ2
1

R2C1
−

ρ2
2

R2C1
0

0 0 0

 , Bav = 0,

Π∩ =
[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
.

For the simulations the following parameters have been
used: C1 = 80.36mF, C2 = 8.2mF, L = 5H, R2 =
20Ω, R1 = 10Ω and ū = 5V with duty cycles
(d1, d2, d3, d4) = (0.3, 0.4, 0.2, 0.1) and initial con-
ditions x0 = (1, 1, 0)>. The evolutions of the state
variables are shown in Figure 4. We can see that by de-
creasing the switching period from p = 0.1s to p = 0.02s
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Fig. 4. Evolution of the state variables (first component top,
second component middle, third component bottom)for slow
switching (p = 0.1s, left) and fast switching (p = 0.02s,
right). The averaging dynamics are plotted with dotted black
lines, while the trajectories of the switched DAE are colored
according to the active mode (mode 1 blue, mode 2 magenta,
mode 3 green, mode 4 red).

the error between the averaged evolutions and the ones
of the switched system reduces with order p.

According to the result of Example 23, the following
theorem gives the conditions that must be satisfied to
extend the averaging result for the switched DAEs (18)
with nonzero inputs.

Theorem 24 Consider the regular switched DAE (18)
with periodic switching signal σ with period p > 0 given
by (5)–(6) and initial condition x(0−) = x0, and consider
the averaged model (27)–(28). Denote by xσ,p(t) the (in
general discontinuous) impulse-free part of the (in gen-
eral distributional) solution of (18) and let xav(t) be the
(smooth) solution of (27). Consider an arbitrary con-
stant ∆ > p. If (PA) and (22) hold ∀i ∈ Σ and the input
u : R+ → Rm is Lipschitz continuous with constant L,
then

xσ,p(t)− xav(t) = O(p) (40)

∀t ∈ [p,∆].

For the proof of Theorem 24 the following Lemma is
needed.

Lemma 25 Consider the functions (26b) and (30b).
Assume that (PA.2) holds and that the input u : R+ →
Rm is Lipschitz continuous with constant L. Then

Π∩Idiff(p){uj} − Iav(p){uj} = O(p2), (41)

for j = 1, . . . , `(p)− 1.

PROOF. Applying the Taylor approximation of the
exponential matrix (1) to (26b) and (30b) we obtain

Idiff(p){uj} =

q∑
i=1

[
(
ΠqΠq−1 · · ·Πi+1 + O(p)

)
×

×
∫ ci

ci−1

(I + O(p)
)
Bdiff
i uj(ξ)dξ] (42a)

Iav(p){uj} =

∫ p

0

(
I + O(p− ξ)

)
Bavuj(ξ)dξ (42b)

where we used that O(ci−ξ) can be substituted by O(p)
since (ci − ξ) ≤ p, ∀i ∈ Σ.

Furthermore taking into account that 1
b−a

∫ b
a
f(t)dt =

f(α), with α ∈ [a, b] we have

Idiff(p){uj} =

q∑
i=1

Πq · · ·Πi+1B
diff
i uj(αi)dip+ O(p2)

(43a)

Iav(p){uj} = Bavuj(αq+1)p+ O(p2) (43b)

where αi ∈ [ci−1, ci] and αq+1 ∈ [0, p].
Due to (PA.2) we have that

Π∩Idiff(p){uj} =

q∑
i=1

Π∩B
diff
i uj(αi)dip+ O(p2). (44)

Hence, considering

‖
( q∑
i=1

Π∩B
diff
i uj(αi)dip

)
−Bavuj(αq+1)p‖

≤
q∑
i=1

‖Π∩Bdiff
i uj(αi)dip−Π∩Bdiff

i uj(αq+1)dip‖

≤
q∑
i=1

‖Π∩Bdiff
i ‖L‖αi − αq+1‖dip

≤
q∑
i=1

‖Π∩Bdiff
i ‖Ldip2,

and by combining the last inequality with (43) and (44)
we obtain that (41) holds.

Proof of Theorem 24 The proof proceeds in two steps.

Step 1: We show that (40) holds for any {tk}`(p)k=1 where
`(p) is an integer such that ∆ − p < `(p)p ≤ ∆ where
p`(p) = O(1).
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The solutions of (23) and (27) are given by (25) and (29),
respectively.

Due to assumption (PA) the averaging result (31) for
the homogeneous part holds, hence

Hdiff(p)kx0 −Hav(p)kΠ∩x0 = O(p) (45)

∀k = 1, . . . , `(p).
By considering (32), taking into account (3) and (PA.1)
and noting that Idiff(p){ui} and Iav(p){ui} are O(p)
functions we obtain

xσ,p(tk)− xav(tk) =

k−2∑
i=0

(Hdiff(p)k−1−iΠ∩Idiff(p){ui}

−Hav(p)k−1−iIav(p){ui}) + O(p)
(46)

Consider a generic j-th term of (46), for j = 1, . . . , `(p)−
1 then we have

Hdiff(p)jΠ∩Idiff(p){uj} −Hav(p)jIav(p){uj} =

Hdiff(p)jΠ∩Idiff(p){uj} −Hav(p)jΠ∩Idiff(p){uj}
+Hav(p)jΠ∩Idiff(p){uj} −Hav(p)jIav(p){uj}

= (Hdiff(p)j −Hav(p)jΠ∩)Π∩Idiff(p){uj}
+Hav(p)j(Π∩Idiff(p){uj} − Iav(p){uj})

= O(p2)

where we used (45), Lemma 25 and (3).
Then by using (46), we have that

xσ,p(t
+
k )−xav(tk) = (k−2)O(p2)+O(p) = O(p) ∀{tk}`(p)k=1.

(47)

Step 2: We show that (40) holds for all time instants
different from multiples of p.

The solutions of the switched and averaged system eval-
uated in τ ∈ [sk,i, sk,i+1), with i ∈ N and k ∈ N, can
be written in the form (35). Hence by applying the Tay-
lor expression (1) we obtain (36). Then considering (37)
and (47), the proof follows by concatenating (36) for in-
creasing i ∈ Σ and k = 1, . . . , `(p) + 1.

Example 26 The consistency projectors of Example 23
are given by

Π1 =
[

1 0 0
0 1 0
0 0 1

]
, Π2 =

[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 1

]
,

Π3 =
[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 0

]
, Π4 =

[
1 0 0
0 1 0
0 0 0

]
.

We can see that the projector assumptions (PA) hold.
Furthermore by analyzing the following impulsive projec-

tors

Π imp
1 =

[
0 0 0
0 0 0
0 0 0

]
, Π imp

2 =
[ 0 0 ρ2

0 0 −ρ1
0 0 0

]
,

Π imp
3 =

[ 0 ρ2 0
0 −ρ1 0
0 0 1

]
, Π imp

4 =
[

0 0 0
0 0 0
0 0 1

]
,

and the Bi matrices with i = 1, . . . , 4 we see that (22)
is also satisfied. Hence, according to Theorem 24, the
averaging result holds as confirmed by the simulations in
Figure 4.

The Lipschitz assumption on the input u introduced in
Lemma 25 and used for the proof of Theorem 24, can
be relaxed in a particular case as shown by the following
result.

Proposition 27 Consider a non-homogeneous switched
DAE where (22) and the averaging result for the corre-
sponding homogeneous system hold. Then if the following
conditions hold

Bdiff
i = Bdiff

h , ∀i, h ∈ Σ (48)

the averaging result (40) is satisfied.

PROOF. By using (42) and noting that the functions
Idiff(p){uj} and Iav(p){uj} are O(p) we have

Π∩Idiff(p){uj} − Iav(p){uj}

=

q∑
i=0

∫ ci+1

ci

Π∩B
diff
i uj(ξ)dξ −

∫ p

0

Bavuj(ξ)dξ

+ O(p2)

=

q∑
i=0

∫ ci+1

ci

Π∩(Bdiff
i −Bav)uj(ξ)dξ + O(p2), (49)

where j = 1, . . . , `(p)− 1. Then considering that

Π∩

(
Bdiff
i −Bdiff

i di −
∑
h6=i∈Σ

Bdiff
h dh

)
= Π∩

∑
h6=i∈Σ

(Bdiff
i −Bdiff

h )dh, (50)

where we use di = 1−
∑
h6=i∈Σ dh with i ∈ Σ. By combin-

ing (49) and (50) with (46) and taking into account (31),

the averaging result (40) holds for any {tk}`(p)k=1. It is easy
to prove that (40) holds for all time instants different
from multiples of p, then the proof is complete.

Remark 28 In the case of a switched DAE with two
modes, the averaging results proved in Theorem 18, The-
orem 24 and Proposition 27, hold even if Π∩ is a projec-
tor but assumption (PA.2) doesn’t hold.
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4 Stability via fast switching

The averaging result in Theorem 18 can be used for the
stability analysis of the homogeneous switched DAE

Eσ(t)ẋ(t) = Aσ(t)x(t), t ∈ R+, (51)

with σ given by (5)–(6).

Remark 29 The proof of Theorem 18 reveals that the
constant involved in the big-O bound depends linearly on
‖x0‖ and ∆. Then by considering (34) we have that

‖xσ,p(t)− xav(t)‖ ≤ c‖x0‖∆p, ∀t ∈ [p,∆]

for sufficiently small p and a constant c > 0 independent
of p, x0 and ∆.

Theorem 30 Consider the regular switched DAE (51)
with periodic switching signal σ given by (5)–(6) and
initial condition x(0−) = x0, and consider the aver-
aged model (27)–(28). Denote by xσ,p(t) the (in gen-
eral discontinuous) impulse-free part of the (in general
distributional) solution of (51) and let xav(t) be the
(smooth) solution of (27) with u(t) = 0 ∀t. If the av-
eraged system (27) is exponentially stable, then there
exists a switching period p, say p∗, such that the switched
system (51) is exponentially stable.

PROOF. Due to the exponential stability of the aver-
aged system we can choose a fixed time instant T > 0,
such that

‖xav(T )‖ ≤ 1

2
‖xav(T/2)‖ (52)

for all initial conditions x0 ∈ Rn in (27). Let

c := min
{ ∥∥∥eAavT/2Π∩x0

∥∥∥ ∣∣∣ ‖Π∩x0‖ = 1
}
> 0,

where positivity follows from the continuity of the map
z 7→ eAavT/2z and triviality of the kernel of the matrix
eAavT/2. Because of (31) we can choose p > 0 sufficiently
small such that

‖xav(T )− xσ,p(T−)‖ ≤ c

8
≤ 1

8
‖xav(T/2)‖ (53)

‖xσ,p(T/2−)− xav(T/2)‖ ≤ c

8
≤ 1

8
‖xav(T/2)‖ (54)

∀ p ∈ (0, p) and all solutions of (51) and (31) where we
consider, without loss of generality, initial conditions x0

satisfying ‖Π∩x0‖ = 1.

Combining (53) with (52), and by using the reverse tri-
angle inequality, we obtain

‖xσ,p(T−)‖ ≤ ‖xav(T )‖+
1

8
‖xav(T/2)‖

≤ 1

2
‖xav(T/2)‖+

1

8
‖xav(T/2)‖

=
5

8
‖xav(T/2)‖ (55)

and (54) together with the reverse triangle inequality,
implies

‖xσ,p(T/2−)‖ ≥ |‖xav(T/2)‖ − 1

8
‖xav(T/2)‖

≥ 7

8
‖xav(T/2)‖. (56)

Altogether, we arrive at

‖xσ,p(T−)‖ ≤ 5

7
‖xσ,p(T/2−)‖, (57)

i.e. we have shown that for all initial conditions there is
a reduction of at least 5/7 of the norm of the state on a
time interval of length T/2 and for all sufficiently small
switching periods p. Without restriction, we can choose
a p∗ = T/(2θ) for sufficiently large θ ∈ N. Consider the
solution of (51) as a concatenation of transition matrices
defined as

Φp∗,i := eA
diff
i dip

∗
Πi,

then let us introduce for t1 > t0 ≥ 0 the state transi-

tion matrix Φ
t−0 →t

−
1

σ,p ∈ Rn×n which maps any (possibly
inconsistent) initial value x0 ∈ Rn at t−0 to the value of
x(t−1 ), in particular,

xσ,p∗(t+1 ) = Φt0→t1σ,p∗ xσ,p∗(t−0 ),

for all solutions of (51) and all t1 > t0 ≥ 0. From (57) it
follows that ∥∥∥Φ

T/2→T
σ,p∗

∥∥∥ ≤ 5/7.

From T/2 = θp∗ for θ ∈ N and the periodicity of the
switching signal it follows that

Φ
kT/2→(k+1)T/2
σ,p∗ = Φ

T/2→T
σ,p∗ ∀k ∈ N \ {0},

in particular, by considering that T/2 is a multiple of
the switching period p∗,

xσ,p∗(kT/2−) = (Φ
T/2→T
σ,p∗ )k−1Φ

0→T/2
σ,p∗ x0

and hence

‖xσ,p∗(kT/2−)‖ ≤
(

5

7

)k−1 ∥∥∥Φ
0→T/2
σ,p∗

∥∥∥ ‖x0‖. (58)
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From (54), by applying the reverse triangle inequality
we have that

‖Φ0→T/2
σ,p ‖‖x0‖ ≤ ‖xav(T/2)‖+ αp.

with a suitable constant α > 0. Hence, considering (1)
we can conclude that

Φ0→T/2
σ,p = eAavT/2 + O(p) = O(1). (59)

Furthermore, for τ ∈ (0, T/2) we have that

xσ,p∗(kT/2 + τ−) = Φ
T/2→T/2+τ
σ,p∗ xσ,p∗(kT/2−) (60)

where

ΦT/2→T/2+τ
σ,p = eAavτ + O(p) = O(1). (61)

Considering the time instant t = kT/2 + τ and combin-
ing (58) with (60), we have that

‖xσ,p∗(t−)‖ ≤
(

5

7

)k−1 ∥∥∥Φ
T/2→T/2+τ
σ,p∗

∥∥∥∥∥∥Φ
0→T/2
σ,p∗

∥∥∥ ‖x0‖

By considering (59), (61), k = 2(t− τ)/T and µ =
(

5
7

)2
where µ ∈ (0, 1), we have that for sufficiently small
p∗ = T/(2θ), there exists constant C > 0 such that ∀
t > 0

‖xσ,p∗(t−)‖ ≤ Cµbt/Tc‖x0‖
which implies exponential stability of the switched sys-
tem (51).

5 Partial averaging

The averaging result in Theorem 24 allows to approxi-
mate a switched DAE by means of a smooth averaged
system. If conditions (PA) are not satisfied, it might be
possible to partition the state variable such that the av-
eraging result holds only for a part of the state. The re-
sulting partial averaged model is still a switched system
but simpler than the original one. The following exam-
ple motivates the partial averaging analysis.

Example 31 Consider the electrical circuit of Figure 3
where, for simplicity, the inductor is not considered. As-
sume as state variables the currents and the voltages of
the two capacitors. We can model the system consider-
ing the input u(t) as a state variable (note that the state
equation that represents the input is given by du/dt = 0).
Then the system can be written in the form (51) where the
state variables are given by x = [vC1

, vC2
, u, iC1

, iC2
]>.

The E matrix is the same for all modes

Ei =

[
C1 0 0 0 0
0 C2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

]
i = 1, . . . , 4

while the Ai-matrices i = 1, . . . , 4, are given by

A1 =

[
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 −1 R1 0
0 1 0 0 −R2

]
, A2 =

 0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 −1 0 0 0

1
R1
R2
−1 R1 R1

 ,
A3 =

 0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 −1 0 0 0
0 1
R2

0 1 1

 , A4 =

[
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 1 0
0 1 0 0 −R2

]
.

Consider the constants ρ1 and ρ2 defined in (39) and

the following constant ρ3 = ρ1ρ2(R1+R2)
R1R2

, then the con-
sistency projectors are

Π1 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
− 1
R1

0 1
R1

0 0

0 1
R2

0 0 0

 , Π2 =


ρ1 ρ2 0 0 0
ρ1 ρ2 0 0 0
0 0 1 0 0

− ρ3C1
C2

−ρ3
ρ1
R1

0 0

−ρ3 − ρ3C2
C1

ρ2
R1

0 0

 ,

Π3 =


ρ1 ρ2 0 0 0
ρ1 ρ2 0 0 0
0 0 1 0 0

−
ρ2
1
R2

− ρ1ρ2R2
0 0 0

− ρ1ρ2R2
−
ρ2
2
R2

0 0 0

 , Π4 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1
R2

0 0 0

 .
we can see that (PA) do not hold and an averaging re-
sult as stated in Theorem 18 doesn’t hold. The evolutions
of the state variables are reported in Figure 5 with dif-
ferent switching periods. The state variables x4 and x5

present state jumps whose amplitudes are independent
from the switching period while the first two state vari-
ables seem to converge to an averaging evolution. Note
that the simulations are obtained with initial conditions
x0 = (1, 1, 5, 0, 0)>, while the input x3 is a constant
value given by x03

= 5V .

From the Example 31 it is clear that in some cases the
averaged model is not sufficient to represent the dynam-
ics of the system; there are states jumps whose ampli-
tudes are independent from the switching period and
cannot be presented with an averaged model. However
it is of interest to analyze a simplified model in which
some states are represented by continuous values while
for the remaining states some switching is still needed.

We want to find conditions such that a partial averaged
model is given by

ẋpav(t) = Adiff
pavi

xpav(t) +Bdiff
pavi

u(t), t ∈ (sk,i, sk,i+1)

(62a)

xpav(s+
k,i) = Π∗i xpav(s−k,i), (62b)

xpav(0−) = Π∗∩x0, (62c)
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Fig. 5. Evolution of the state variables (first component top,
fifth component bottom) for slow switching (p = 0.1s, left)
and fast switching (p = 0.02s, right). The trajectories of
the switched DAE are colored according to the active mode
(mode 1 blue, mode 2 magenta, mode 3 green, mode 4 red).

where the switching times are given by (5) and

Adiff
pavi

:=

[
Apav 0

Adiff
21i A

diff
22i

]

Bdiff
pavi

:=

[
Bpav

Bdiff
n−αi

]

Π∗i :=

[
Iα 0[α×(n−α)]

Π21i Π22i

]

Π∗∩ :=

[
Π∩P 0

Π211 Π221

]



, (63)

with

Apav := Π∩P

q∑
i=1

diA
diff
11iΠ∩p

Bpav := Π∩P

q∑
i=1

diB
diff
αi

 , (64)

where di, i ∈ Σ is the duty cycle of the i-th mode
defined by (5) and Π∩P =

∏q
i=1Π11i . Note that the

consistency projectors, the flow matrices and the Bdiff
i

have the following structures

Bdiff
i = [Bdiff

αi Bdiff
n−αi ]

>, (65a)

Adiff
i =

 Adiff
11i[α×α]

0[α×(n−α)]

Adiff
21i[(n−α)×α]

Adiff
22i[(n−α)×(n−α)]

 , (65b)

Πi =

[
Π11i[α×α]

0[α×(n−α)]

Π21i[(n−α)×α]
Π22i[(n−α)×(n−α)]

]
, (65c)

with i ∈ Σ and α < n independent of mode i.

The following theorem shows that under particular con-
ditions a partial averaging result can be obtained.

Theorem 32 Consider the regular switched DAE (18)
with periodic switching signal σ with period p > 0 given
by (5)–(6) and initial condition x(0−) = x0, and consider
the partial averaged model (62)–(64). Assume that the
following conditions hold.

(i) The matrix pairs (Ei, Ai) are regular and (22) holds
∀i ∈ Σ.

(ii) The corresponding consistency projectors Πi, flow
matrices Adiff

i and Bdiff
i are in the form of (65).

(iii) ∀i ∈ Σ

imΠ∩P ⊆ imΠ11i (66a)

kerΠ∩P ⊇ kerΠ11i . (66b)

(iv) The matrix
∏q
i Π22i is a projector.

(v) Π22iΠ21i−1
= 0, ∀i ∈ Σ with Π210

:= Π21q
.

Denote by xσ,p(t) the (in general discontinuous) impulse-
free part of the (in general distributional) solution of (18)
and let xpav(t) be the solution of the switched partial
averaged system (62). Consider an arbitrary constant
∆ > p, then

xσ,p(t)− xpav(t) = O(p), (67)

∀t ∈ [p,∆] .

To prove the result we introduce the following Lemma.

Lemma 33 Consider the regular switched DAE (18)
with periodic switching signal σ with period p > 0 given
by (5)–(6) and initial condition x(0−) = x0, satisfying
assumptions (i), (ii) and (iii) of Theorem 32. Let Apav

and Bpav given by (64). Consider the following averaged
system

żpav(t) = Apavzpav(t) +Bpavu(t), (68a)

zpav(0) = Π∩p [Iα 0]x0. (68b)

Denote by xσ,p(t) the (in general discontinuous) impulse-
free part of the (in general distributional) solution of (18)

14



and let zpav(t) be the solution of the averaged system (68).
Consider an arbitrary constant ∆ > p, then

[Iα 0]xσ,p(t)− zpav(t) = O(p),

∀t ∈ [p,∆].

PROOF. Let z := [Iα 0]x, then assumption (ii) implies
that z is governed by the following switched ODE with
jumps:

ż(t) = A11iz(t) +Bdiff
αi u(t), t ∈ (sk,i, sk,i+1),

z(s+
k,i) = Π11iz(s

−
k,i),

z(0−) = [Iα 0]x0.

Invoking the property of Π11i the proof follows by ex-
tending the Remark 21 to the case of non-homogeneous
systems.

Proof of Theorem 32 By decomposing xpav(t) =
[zpav(t) ypav(t)]> and xσ,p(t) = [zα(t) y(t)]>, we can de-
fine the error variables wy = y−ypav and wz = z−zpav.
Then the proof is a straightforward combination of
Lemma 33 and Lemma 8.

Example 34 Consider the switched DAE in Exam-
ple 31, it seems possible to construct a partial averaged
model. Indeed, by analyzing the consistency projec-
tors it can be seen that the assumptions on the struc-
ture, (iii), (iv) and (v) of Theorem 32 are satisfied,
assuming α = 3. Furthermore analyzing the structures
of the following flow matrices

Adiff
1 =

[−1.24 0 1.24 0 0
0 6.10 0 0 0
0 0 0 0 0

0.12 0 −0.12 0 0
0 0.3 0 0 0

]
, Adiff

2 =

[−1.53 −0.15 1.12 0 0
−1.53 −0.15 1.12 0 0

0 0 0 0 0
0.21 0.02 −0.15 0 0
0.02 0 −0.01 0 0

]
,

Adiff
3 =

[−0.51 −0.05 0 0 0
−0.51 −0.05 0 0 0

0 0 0 0 0
0.02 0 0 0 0

0 0 0 0 0

]
, Adiff

4 =

[
0 0 0 0 0
0 6.10 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.30 0 0 0

]
,

we see that (ii) holds. Then it is possible to construct a
partial averaged system (62) where the Apav and Π∩p are
given by

Apav =
[−0.82 −0.08 0.79
−0.82 −0.08 0.79

0 0 0

]
Π∩p =

[ ρ1 ρ2 0
ρ1 ρ2 0
0 0 1

]
for which (67) holds.

To construct the averaged model the following duty cycles
(d1, d2, d3, d4) = (0.3, 0.4, 0.2, 0.1) have been chosen.
By comparing the evolution of the state variables obtained
in Example 31 to the ones of the partial averaged model
we have that the error between the averaging and the
switched solutions decrease by decreasing the switching
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Fig. 6. Averaging dynamics of the state variables (fourth
component top, fifth component bottom) for slow switching
(p = 0.1s, left) and fast switching (p = 0.02s, right).

period from p = 0.1s to p = 0.02s. The partial averaging
dynamics of the fourth and fifth state variables present
jumps, as shown in Figure 6. Note that the simulations
parameters are the same used in Example 31.

By analyzing the conditions (iii), (iv) of Theorem 32 it
can be seen a certain analogy with the case of full averag-
ing in Section 3. The assumption (v) it is not intuitively
clearly but is still necessary, as can be shown by the fol-
lowing example of two modes in which it doesn’t hold.

Example 35 (Numerical example) Consider the
following matrix pairs (Ei, Ai) with i = 1, 2

E1 =

[
1 0 0
0 − 3

4 3

3 − 1
4 1

]
, A1 =

[
0 5 0
0 7 0
−3 1 0

]
,

E2 =
[

1 0 0
0 1 1
0 0 0

]
, A2 =

[
5 −2 0
6 −1 0
1 3 0

]
.

The flow-matrices are the following

Adiff
1 =

[
− 45

49 0 0
405
2401 0 0

− 3711
9604 0 0

]
, Adiff

2 =

[
17
3 0 0

− 17
9 0 0

74
9 0 0

]
,

while the consistency projectors are given by

Π1 =
[

1 0 0
−0.18 0 0
−0.05 −0.25 1

]
, Π2 =

[
1 0 0

−0.33 0 0
0.33 1 1

]
,

where one has:

Π111
Π112

= Π112
Π111

⇒ (iii), Π111
, Π112

∈ R (69)

Π221
Π212

= [ 0
0.42 ] Π222

Π211
=
[

0
−0.23

]
. (70)

Taking into account the evolution of the first two state
variables, it can be seen that the solution of the switched
DAE and that of the averaged model become close to each
other by decreasing the switching period, as shown in
Figure 7. The evolution of the last variable is influenced
by (70); it can be seen that the absolute error between the
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Fig. 7. Evolution of the state variables (first component
top, second component middle, third component bottom)
of Example 35 for slow switching (p = 0.1s, left) and fast
switching (p = 0.02s, right). The averaging dynamics are
plotted with dotted black lines, while the trajectories of
the switched DAE are colored according to the active mode
(mode 1 blue, mode 2 magenta).

averaging and the switching dynamics of x3 remains the
same for both switching periods while the relative error
with respect to the value of the state variable decreases
by choosing lower values of p. Note that the set of con-
sistency projectors is not product bounded as regard the
third variable, then the state x3 grows unbounded on a
fixed time-interval with a switching frequency going to
infinity,cf. [20].

6 Conclusion

In this paper we have analyzed the averaging technique
applied to the switched linear DAEs; an averaged model
has been formulated, for which the averaging result
holds. In Theorem 18 and Theorem 24 the averaging
result is obtained by making assumptions on the im-
age and on the kernel of the consistency projectors. If
the averaged model is exponentially stable it exists a
switching period p for witch the switched system is also
exponentially stable.

We also considered the case in which the state variables
present jumps that are independent from the switching
period. This state variables cannot be represented in a
continuous way but we can still use an averaged model
for the remaining state variables. For modeling the whole
system jumps are necessary, i.e., we need a partial av-
eraged model; in order to prove the averaging result as-
sumptions on the structures of the consistency projec-
tors and on the flow matrices are also needed. Through
the paper different examples are shown to illustrate the

applicability of the averaging results for switched DAEs,
in particular a switched capacitor circuit has been ana-
lyzed.

By analyzing the full and partial averaging results it
seems that Theorem 18, Theorem 24 and Theorem 32,
can be reformulated for a switching signal σ defined
in such a way that the duty cycles di, i ∈ Σ are not
fixed in a period, i.e. they can assume different values
from one period to another. We can consider a time-
dependent averaged model, in analogy with the result of
the averaging theory for switched ODE, see [13], however
the formulation is out of the scope of the paper.
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