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Abstract— This paper addresses the notion of detectabil-
ity for continuous-time switched systems comprising linear
differential-algebraic equations (DAEs). It relates to studying
asymptotic stability of the set of state trajectories corresponding
to zero input and zero output, with a fixed switching signal.
Due to the nature of solutions of switched DAEs, the problem
reduces to analyzing stability of the trajectories emanating
from a non-vanishing unobservable subspace, for which we first
derive a geometric expression. The stability of state trajectories
starting from that subspace can then be checked in two possible
ways. In the first case, detectability of switched DAE is shown
to be equivalent to the asymptotic stability of a reduced
order discrete-time switched system. In the second approach,
the solutions from a non-vanishing unobservable subspace are
mapped to the solutions of a reduced order continuous system
with time-varying switching ordinary differential equations
(ODEs). As a special case of the later approach, the reduced
order switched system is time-invariant if the unobservable
subspace is invariant for all subsystems.

I. INTRODUCTION

We consider a class of systems with switching linear
differential-algebraic equations (DAEs) described as:

Eσẋ = Aσx+Bσu

y = Cσx
(1)

where x : R → Rn, u : R → Rdu , y : R → Rdy
denote the state, input and output trajectories of the system
respectively. The switching signal σ : R → N is a locally
finite, piecewise constant, right-continuous function of time
and in our notation it changes its value at time instants
0 = t0 < t1 < t2 < . . . called switching times. We adopt
the convention that over the interval [tk, tk+1) of length
τk := tk+1− tk, the active mode is defined by the quadruple
(Ek, Ak, Bk, Ck), k ∈ N.

Several properties of switched DAEs have been studied in
the recent past. This paper is aimed at introducing the notion
of detectability, which relates to the question whether the
state trajectories of the system converge to the origin when
the input u, and the observed output y are identically zero.
This question, of course, can be addressed in several different
ways depending on for what class of switching signals do
we seek stability of the dynamics of interest.

In our framework, we consider the switching signal to
be fixed and given, and study the stability of a subset
of trajectories of (1) obtained with (u, y) ≡ 0, for that
given switching signal. The starting point for addressing this
question appears in our previous works [8], [10], where we
find an unobservable subspace (of initial conditions) for a
given σ which produces zero output with zero input.
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Because of the nature of the solutions of the switched
DAEs, certain solutions starting from the unobservable sub-
space may jump to zero in finite time and if the set of initial
conditions for which this happens can be identified from
system data, then it is not relevant to consider the asymptotic
behavior of such trajectories. For this reason, we reduce the
problem of detectability to studying the solution starting from
a subset of unobservable subspace which do not vanish, or
jump to zero. A systematic procedure for computing such
a subspace based on linear-algebraic methods is given. It
is then seen that the stability of these trajectories can be
addressed by studying the stability of certain reduced order
switching ordinary difference/differential equations (ODEs),
and hence tools from the theory of stability of discrete-
time or continuous-time switched ODEs can be invoked to
complete the solution to our detectability problem at hand.

With regards to the current literature, this paper aims at
bridging certain notions from stability of switched systems
and observability results obtained in the algebraic setting. To
the best of our knowledge, this particular approach towards
detectability has not been adopted. A novel aspect of the
system class considered in this paper also lies in the fact
that the jump maps are typically singular, and the solutions
may involve Dirac impulses and its derivatives in addition to
jumps. For switched linear systems without jumps, one finds
certain results on detectability [3] which relate to extending
the Kalman decomposition to switched systems and define
detectability as the stability of the dynamics reduced to a
common invariant subspace (similar result would appear as
a particular case of our main result in Section VI).

Some recent results on a related notion of output-to-
state stability for switched nonlinear systems appear in [6],
where the focus is on characterizing a class of switching
signals under which the growth of the state trajectory is
bounded by some increasing function of the output norm.
This approaches typically requires some subsystems to be
completely detectable and the stabilizing switching signals
are the ones for which the detectable subsystems are active
sufficiently longer than non-detectable ones.

In our work, detectability of individual subsystems is not
required but this generality comes at the price of work-
ing with a fixed switching signal, and knowing the exact
switching times to formulate an expression of unobservable
subspace, whose stability is then taken into account. For
nonswitched DAEs, one can find references related to de-
tectability in [1].

The outline of this paper is as follows: In Section II we
collect some preliminary results related to the solutions of
switched DAEs, and related stability notions. We formulate
the definition of detectability in Section III and reduce the
problem to the stability of non-vanishing unobservable trajec-
tories. A geometric expression of the set of initial conditions



generating such trajectories is presented in Section IV, and
their stability criteria is studied in Section V in terms of
certain reduced-order time-varying systems. In Section VI,
we treat a special case where the unobservable subspace
satisfies certain invariance condition, and the reduced-order
subsystems that we obtain are time-invariant whose stabil-
ity, and hence detectability of the original system, can be
checked using the tools from stability of switched ODEs.

II. PRELIMINARIES

We recall some algebraic tools which will be used in
defining the solution of a switched DAE (1) and also used
heavily in deriving conditions for detectability.

A. Properties of a matrix pair (E,A)

We start by collecting important properties and definitions
for matrix pairs (E,A). We only consider regular matrix
pairs, i.e. for which the polynomial det(sE − A) is not the
zero polynomial. A very useful characterization of regularity
is the following well-known result (see e.g. [2]).

Proposition 1 (Regularity and quasi-Weierstraß form): A
matrix pair (E,A) ∈ Rn×n × Rn×n is regular if, and only
if, there exist invertible matrices S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (2)

where J ∈ Rn1×n1 , 0 ≤ n1 ≤ n, is some matrix and N ∈
Rn2×n2 , n2 := n− n1, is a nilpotent matrix. C
One can calculate the matrices S, T by constructing the so
called Wong-sequences from the matrices E,A, see [2] for
details. Based on these transformation matrices we define the
following “projectors” [9].

Definition 2 (Consistency, differential and impulse projectors):
Consider the regular matrix pair (E,A) with corresponding
quasi-Weierstrass form (2). The consistency projector of
(E,A) is given by

Π(E,A) = T

[
I 0
0 0

]
T−1,

the differential projector is given by

Πdiff
(E,A) = T

[
I 0
0 0

]
S,

and the impulse projector is given by

Πimp
(E,A) = T

[
0 0
0 I

]
S,

where the block sizes correspond to the ones in (2). C
Note that only the consistency projector is a projector

in the usual sense (i.e. Π(E,A) is an idempotent matrix);
whereas Πdiff

(E,A) and Πimp
(E,A) are not projectors because, in

general, Πdiff
(E,A)Π

diff
(E,A) 6= Πdiff

(E,A) and the same holds for
Πimp

(E,A). For a system described by the DAE Eẋ = Ax,
the fundamental object of interest is the consistency space
defined as

C(E,A) :=
{
x0 ∈ Rn

∣∣ ∃x ∈ C1 : Eẋ = Ax ∧ x(0) = x0
}
,

where C1 is the space of differentiable functions x : R →
Rn. It then holds that [2], im Π(E,A) = C(E,A), and for the

initial condition x(0) ∈ C(E,A), there exists a unique solution
x ∈ C1 of Eẋ = Ax that evolves within C(E,A). In fact, these
differentiable solutions can be described using an ODE using
the definition of differential projector.

Lemma 3 ([9, Lem. 3]): Consider the DAE Eẋ = Ax
with regular matrix pair (E,A). Then any solution x ∈ C1
of Eẋ = Ax fulfills

ẋ = Πdiff
(E,A)Ax =: Adiffx. C

In case the initial condition is inconsistent, the basic idea
behind constructing the solution is to introduce a jump that
maps the initial condition to C(E,A), and after this initial
time, the solution is propagated in a smooth manner. When
the matrix N in (2) is not zero, the derivatives of jumps may
appear in the solution, which are formalized by introducing
Dirac impulses and its derivatives. For this reason, we
consider the space of piecewise-smooth distributions DpwC∞

from [11] as the solution space, and seek a solution x ∈
(DpwC∞)n to the following initial-trajectory problem (ITP):

x(−∞,0) = x0(−∞,0)

(Eẋ)[0,∞) = (Ax)[0,∞),
(3)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution f
to an interval I. In [11], it is shown that the ITP (3) has
a unique solution for any initial trajectory if, and only if,
the matrix pair (E,A) is regular. In particular, the following
result concerning the consistency projector holds.

Lemma 4 (Role of consistency projector [11, Thm. 4.2.8]):
Consider the ITP (3) with regular matrix pair (E,A) and
with arbitrary initial trajectory x0 ∈ (DpwC∞)n. Then there
exists a unique solution x ∈ (DpwC∞)n and

x(0+) = Π(E,A)x(0−). C
Finally, the role of the impulsive projector becomes clear

when expressing the impulsive part, denoted by x[0], of the
distributional solution x of the ITP (3).

Lemma 5 ([9, Cor. 5]): Consider the ITP (3) with regular
matrix pair (E,A). Let Eimp := Πimp

(E,A)E then, for the
unique solution x ∈ (DpwC∞)n,

x[0] = −
n−2∑
i=0

(Eimp)i+1x(0−)δ
(i)
0 , (4)

where δ(i)0 denotes the i-th (distributional) derivative of the
Dirac-impulse δ0 at t = 0. C

B. Distributional solutions and stability
When studying switched DAEs of the form Eσẋ = Aσx

the consistency spaces for each pair (Ek, Ak) are different
in general. Hence, the switch from one mode to another may
introduce jumps, and Dirac impulses (and its derivatives)
in the solution. This makes the framework of piecewise
smooth distributions [11] a natural candidate for studying
the solutions of a switched DAE. More formally, consider a
homogenous switched DAE

Eσẋ = Aσx.

Under the assumption that each pair (Ek, Ak) is regular,
there exists a solution x ∈ (DpwC∞)n uniquely determined



by the initial value x(0−), which can be expressed as:

x = xfD +
∑
k∈N

n−2∑
i=0

aikδ
(i)
tk

(5)

where xfD denotes the distribution induced by the piecewise
smooth function xf and δ

(i)
tk

denotes the i-th derivative of
the Dirac impulse with support at switching time tk. The
coefficients aik can be inferred from (4). To study the stability
of solutions of switched DAE, we introduce the following
definition:

Definition 6: The switched DAE (1) is called asymptoti-
cally stable if there exist two class KL functions βc, βd, such
that every solution x ∈ (DpwC∞)n, expressed as (5), satisfies

|xf (t)| ≤ βc(|x(0−)|, t), ∀ t ≥ 0 (6)

and for each switching time tk ≥ 0

n−2∑
i=0

|aik| ≤ βd(|x(0−)|, tk). (7)
C

The motivation for this definition comes from the fact that,
under mild assumptions on the switching signal1, it follows
that x converges to the zero distribution as t→∞, i.e., for
every compactly supported smooth function ϕ and its time
shift τt{ϕ}(s) := ϕ(s− t) it holds that

x(τt{ϕ}) = xfD(τt{ϕ}) +
∑
tk≥t

n−2∑
i=0

(−1)iaikϕ
(i)(tk − t)

converges to zero as t tends to infinity. In fact, the next propo-
sition shows that under a mild boundedness assumption on
matrices of system (1) (which is satisfied in case of finitely
many subsystems) the KL estimate (6) on the function part
of x already implies (7).

Proposition 7: Consider the switched DAE (1) with corre-
sponding matrices Eimp

k , k ∈ N (see Lemma 5) and assume
that there exists M > 0 such that ‖Eimp

k ‖ ≤ M for all
k ∈ N and some induced matrix norm ‖ · ‖. Then (1) is
asymptotically stable if and only if (6) holds. C

Proof: The necessity is obvious. To prove sufficiency,
it is first observed that for each k ∈ N, 0 ≤ i ≤ n − 2, we
have

|aik|
(4)
=
∣∣∣(Eimp

k )i+1x(t−k )
∣∣∣ ≤M i+1|x(t−k )|

(6)
≤ M i+1βc(|x(0−)|, tk).

By choosing

βd(r, tk) :=

n−2∑
i=0

M i+1βc(r, tk)

the inequality (7) holds.
Because of Proposition 7, we will only check that the

function part xf of the distributional solution x is converging
to zero to deduce stability of the system under consideration
(under the silent boundedness assumption on Eimp

k ).

1Roughly speaking, it needs to be assumed that the density of switching
times is upper bounded.

Remark 8 (Dirac impulses and stability): In contrast to
previous works on stability of switched DAE [4], [5] we do
not require impulse-freeness of solutions for asymptotic sta-
bility. Rather the stability of the impulsive part is formulated
as stability of the coefficients associated with the impulsive
parts. C

III. DETECTABILITY NOTION

To introduce the notion of detectability, we will limit
ourselves to the following subset of system trajectories:

N σ :=
{
x0∈Rn

∣∣ (x, 0, 0) solves (1) ∧ x(0−)=x0
}
, (8)

where the triplet (x, u, y) denotes signals satisfying (1) for
some given switching signal σ.

Definition 9: The switched DAE (1) is called detectable
for a given switching signal σ, if there exists a class KL
function β such that, for each distributional solution (x, 0, 0)
of (1) with x = xfD +x[·] ∈ (DpwC∞)n and x(0−) ∈ N σ , we
have

|xf (t)| ≤ β(|x(0−)|, t). (9)
C

Thus, in our problem formulation, we only consider the
stability of output-zeroing dynamics for a fixed switching
signal under zero input. The goal of this paper is to develop
conditions for checking this property. Note that due to
linearity of (1), our detectability definition is equivalent to the
property that any two state trajectories corresponding to the
same input and output converge towards each other, which
will be important for the observer design; however, this is
not the topic of this paper and we therefore work with the
simplified definition.

Since the systems under consideration are switched DAEs,
it is entirely possible that a state trajectory starting with a
nonzero initial condition may jump to zero at some time.
From stability point of view, it is not relevant to talk about
such trajectories and hence we can exclude them from the
set N σ . More formally, let

N σ
0 :=

{
x(0−)

∣∣∣∣ (x, 0, 0) solves (1) ∧
∃ t ∈ [0,∞) s.t. x(t) = 0

}
. (10)

Clearly, N σ
0 ⊆ N σ , hence we can choose a nonvanishing-

unobservable subspace N σ

0 ⊆ Rn such that

N σ = N σ
0 ⊕N

σ

0 , (11)

that is, N σ

0 comprises a set of initial conditions which result
in zero output with zero input, but the corresponding state
trajectories do not jump to zero in finite time. Note that the
choice of N σ

0 is not unique. From a detectability viewpoint,
we are only concerned about one possible candidate for N σ

0 ,
and derive conditions for asymptotic stability of the state
trajectories starting from the set N σ

0 . The discussion can be
summed up as follows:

Proposition 10: Consider a subspace N σ

0 ⊆ N σ satisfy-
ing (11). Then (1) is detectable if, and only if, (9) holds for
each solution (x, 0, 0) of (1) with x(0−) ∈ N σ

0 . C
In the remainder of this paper, we want to study tools

for computing some set N σ

0 (Section IV) and conditions for
stability of trajectories starting with initial condition in N σ

0

(Section V).



IV. GEOMETRIC CONSTRUCTION OF N σ

0

In this section, we will give a geometric construction of
the subspace N σ

0 , which intuitively refers to the subspace of
initial conditions of nonvanishing-unobservable trajectories.
The desired construction requires us to first recall the results
on undeterminable2 subspaces from our previous work [9],
[10].

A. Undeterminable subspaces for switched DAEs

We define for k ≥ 0:

Πk := Π(Ek,Ak), Ck := C(Ek,Ak),

Odiff
k := [CkΠk/CkA

diff
k / · · · /Ck(Adiff

k )n−1],

Oimp
k := [CkE

imp
k /Ck(Eimp

k )2/ · · · /Ck(Eimp
k )n−1].

In view of Lemma 3, Odiff
k is the Kalman observability matrix

of the ODE system:

ẋ = Adiff
k x, y = Ckx = CkΠkx

taking into account that x only evolves within the consistency
space (yielding Πkx = x) as well as ΠkA

diff
k = Adiff

k . Making
use of Lemma 5, it is seen that the matrix Oimp

k defines the
mapping from x(t−k ) to y[tk]. As done in [10], these matrices
allow us to define the local unobservable space Mk, k ≥ 0,
as follows

M0 := kerOimp
0 ∩ kerOdiff

0 Π0

Mk := Ck−1 ∩ kerOdiff
k−1 ∩ kerOimp

k ∩ kerOdiff
k Πk, k ≥ 1,

so that it is possible to recover x(t−k ) modulo Mk by using
system data and measurements over the interval (tk−1, tk+1).
We next define the subspaces Qk, k ≥ 0, as follows:

Q0 := Π0M0,

Qk+1 := Πk+1(Mk+1 ∩ eA
diff
k τkQk), k ≥ 1.

(12)

The intuition behind the definition of the subspace Qk is
to define the set containing x(t+k ) when y[t0,tk] ≡ 0. The
recursive definition says that the uncertainty in state at
time t+k is carried forward under the system dynamics and
intersected with the locally unobservable subspace Mk+1.
The resulting subspace is then mapped to Ck+1 to obtain a
smaller set Qk+1 containing x(t+k+1).

Proposition 11 (Undeterminable states [10]): Consider
the switched DAE (1) with zero input. Then Qk for
each k ≥ 0 characterizes the undeterminable space in the
following sense:

y ≡ 0 ⇔ x(t+k ) ∈ Qk, ∀ k ≥ 0.

Furthermore, there exists m∗ ∈ N such that dimQk =
dimQm∗ for all k ≥ m∗. C

B. Nonvanishing-unobservable subspace

To find an expression for N σ

0 , we consider the following
sequence of subspaces. For m ∈ N, let

Pmm = Qm (13a)

2In contrast to the unobservable subspace, the undeterminable subspace
considers the states evaluated at the end of the corresponding interval.

and for k = m− 1, . . . , 0, choose Pmk ⊆ Qk such that

ker Πk+1e
Adiff

k τk +
(
Qk ∩ e−A

diff
k τk(Mk+1 ∩Π−1k+1(Pmk+1))

)
= ker Πk+1e

Adiff
k τk ⊕ Pmk , (13b)

and Pm−1 is chosen so that

ker Π0 +
(
M0 ∩Π−10 (Pm0 )

)
= ker Π0 ⊕ Pm−1. (13c)

We next state the properties of these subspaces Pmk which
will be utilized later and in particular how they relate to N σ

0 .
Proposition 12: For k = 0, · · · ,m, the following state-

ments hold for Pmk :
(i) If x(t−0 ) ∈ Pm−1, then x(t+k ) ∈ Pmk , and

(ii) dimPmk = dimQm.
In particular, N σ

0 = Pm∗−1 , for m∗ given in Proposition 11.C
In what follows, it is assumed that the integer m∗ has been

computed for the given switching signal σ, and we will carry
forward the following simplified notation:

Pk :=

{
Pm∗k , −1 ≤ k ≤ m∗

Qk, k > m∗.

For every solution x with initial condition x(t−0 ) ∈ Pm∗−1 =

N σ

0 , the statements of Propositions 11 and 12 yield

x(t+k ) ∈ Pk, ∀ k ≥ 0.

V. STABILITY CONDITIONS FOR N σ

0

The basic idea in studying the stability of solutions of the
switched DAE starting from P−1 = N σ

0 , is to map them
to the solutions of a reduced order switched ODE. This is
done in two ways: First, in Section V-A, the sought reduced
order system is described by discrete-time switched ODEs
and secondly, in Section V-B, the reduced order system is
described by continuous-time switched ODEs.

A. Analogy with discrete-time switched ODEs

To study the stability of solutions of the DAE starting
from the subspace P−1, we can introduce a reduced order
discrete-time switched ODE which matches the solutions of
the original system at switching times when the output is
restricted to zero.

Theorem 13: Let Pk denote a matrix whose columns
comprise an orthonormal basis of Pk. Then the switched
DAE is detectable for σ if and only if the following discrete-
time system is asymptotically stable for that σ:

ηk+1 = Γkηk (14)

where Γk := P>k+1Πk+1e
Adiff

k τkPk ∈ Rm×m, m ≤ n. C
Proof: We will show that the solution x of the switched

DAE (1) with initial condition x(0−) ∈ N σ

0 = P−1 matches
a solution of the discrete-time system (14) at switching times
tk, k ∈ N, in the sense that

x(t+k ) = Pkηk.

To see this, note that, if x(0−) ∈ P−1, then x(0+) =
Π0x(0−) ∈ P0, and we can write

x(0+) = P0η0



for some η0 ∈ Rm. Proceeding inductively, if it holds for
some k ∈ N, that x(t+k ) = Pkηk, then

x(t+k+1) = Πk+1e
Adiff

k τkx(t+k ) = Πk+1e
Adiff

k τkPkηk.

For a solution η of (14), it thus holds that

P>k+1x(t+k+1) = ηk+1.

Since x(tk+1) ∈ Pk+1 and Pk+1 comprises an orthonormal
basis of Pk+1, it follows that

x(t+k+1) = Pk+1ηk+1.

Because of this relation, we also have, for each k ≥ 0

|x(t+k )|2 = η>k P
>
k Pkηk = |ηk|2,

hence |x(t+k )| = |ηk|. Thus, the system (14) is asymptotically
stable if and only if

|x(t+k )| ≤ βd(|x(t−0 )|, tk). (15)

Without restriction of generality we may assume that tk+1−
tk ≤ T for T > 0 (because we also allow “switches” to the
same mode), hence (15) implies that, for t ∈ [tk, tk+1),

|x(t+)| ≤ e‖A
diff
k ‖T ‖Πk‖ · |x(t−k )|,

and the estimate of the form (6) can thus be obtained for
each t ≥ 0.

B. Analogy with continuous-time switched ODEs

Checking stability using a discrete-time system may be
computationally feasible in several cases, such as, when the
switching is persistent and the switching times are exactly
known. In some cases, when the switching is not persistent,
or the dwell time between switches is long so that the
exponential of a matrix is difficult to handle numerically
for unstable systems, then it is more useful to work with
continuous-time reduced order switched systems. In general,
due to time-varying nature of the subspaces Pk, the reduced-
order comparison system that we obtain is also time-varying.
In the special case, when the unobservable subspace Qm∗

is invariant under the flow of all subsequent modes, we
obtain a piecewise-constant reduced order switched ODE
(see Section VI). Before proceeding with the description of
the comparison system, let us state a useful lemma. The
proof of this lemma is omitted due to space limitations but a
special case of this result appears as Corollary 16 with proof
in Section VI.

Lemma 14: Consider a linear time-invariant system ẋ =
Ax over an interval [0,∞), and assume that the initial
condition x0 := x(0) belongs to an m-dimensional subspace
P ⊂ Rn. Let P ∈ Rn×m be the matrix whose columns form
an orthonormal basis of P . Let R(t) := (P>eA

>teAtP )−1/2

be the square root of the inverse of a positive definite matrix,
let R−1(t) denotes the matrix inverse of R(t), and let Ṙ(t)
denote the element-wise derivative of R(t); then there exists
η0 ∈ Rm such that the solution of the differential equation

η̇(t) = −R−1(t)Ṙ(t)η(t), η(0) = P>x0 (16)

has the properties that η(t) = eAtPR(t)x(t), and |η(t)| =
|x(t)|. In particular, (16) is forward complete. C

For an illustration of Lemma 14, let us consider two exam-
ples to see how the reduced-order system can be computed.

Example 1: Consider the dynamical system ẋ = Ax with
A =

[
a 1
−1 a

]
for which eAt = eat[ cos t

− sin t
sin t
cos t ]. If we now

take any 1-dimensional subspace that contains x(0) and
represent its basis with the unit vector col(m1,m2), then
due to the particular structure of the exponential matrix, we
have R(t) = e−at, so that Ṙ(t) = −ae−at. The desired
scalar differential equation is then given by η̇(t) = aη(t)
which in this case is time-invariant. If the scalar ODE is
initialized with η(0) = (v1 v2)x(0) then it is easily seen
that η(t) captures the Euclidean-norm of the state trajectory
x(t) at each time instant t ≥ 0. C

Example 2: Consider a second-order system which is not
diagonalizable with A = [a0

1
a ] so that eAt = eat[ 10

t
1 ]. Choose

a subspace for which the unit vector is given by col(v1, v2).
One can then compute that, in this case,

R(t) = e−at(1 + 2v1v2 t+ v22 t
2)−1/2

so that the desired scalar differential equation for η having
the property that |η(t)| = |x(t)| is given by

η̇(t) =

(
a+

v1v2 + v22 t

1 + 2v1v2 t+ v22 t
2

)
η(t). C

Based on the statement of Lemma 14, the solutions of a
switched DAE corresponding to nonvanishing-unobservable
state trajectories could be mapped to a reduced order time-
varying system. Let Pk denote the matrix whose columns
comprise orthonormal basis of the subspace Pk. For t ∈
[tk, tk+1), we introduce the notation

Mk(t) := eA
diff
k (t−tk)PkRk(t)

Rk(t) := (P>k e
Adiff>

k (t−tk)eA
diff
k (t−tk)Pk)−1/2,

and consider the following switched ODE with jumps

η̇(t) = −Rk(t)Ṙk(t)η(t), t ∈ (tk, tk+1) (17a)

η(t+k ) = P>k ΠkMk−1(tk)η(t−k ) (17b)

with initial value η(t−0 ) ∈ Rm.
Theorem 15: The switched DAE is detectable for given

σ if, and only if, the system (17) is globally asymptotically
stable for σ. C

Proof: We will show that there exists a solution η
to (17) such that |η(t)| = |x(t)|, for each t ≥ 0, where
(x, 0, 0) is the solution to (1) with x(0−) ∈ N σ

0 . Let η be
the solution of (17) corresponding to the initial condition
η(t+0 ) = P>0 x(t+0 ), where x(t+0 ) = Π0x(t−0 ) ∈ P0. Since the
system (17) admits a unique solution, then from Lemma 14,
we indeed have that η(t) = M>0 (t)x(t), x(t) = M0(t)η(t)
and hence |x(t)| = |η(t)| for each t ∈ [0, t1). To show that
|x(t)| = |η(t)|, for all t ≥ 0, we proceed by induction,
and assume that η(t+k ) = P>k x(t+k ), x(t+k ) = Pkη(t+k ),
then due to Lemma 14, x(t−k+1) = Mk(tk+1)η(t−k+1). At
the switching instant tk+1, we have

x(t+k+1) = Πk+1x(t−k+1) = Πk+1Mk(tk+1)η(t−k+1)

so that the jump relation in (17b) could be written as:

η(tk+1) = P>k+1x(tk+1) = Mk+1(tk+1)>x(tk+1).



The application of Lemma 14 now gives |x(t)| = |η(t)| for
t ∈ [tk+1, tk+2), and hence the desired result follows.

VI. INVARIANT UNDETERMINABLE SUBSPACE

The statement of Lemma 14 simplifies considerably if the
subspace Pk is A-invariant, that is, AP ⊆ P . In particular,
the reduced order ODE in this case is time-invariant.

Corollary 16: Consider a linear time-invariant system ẋ =
Ax over an interval [0,∞), and assume that the initial
condition x0 := x(0) belongs to an m-dimensional subspace
P ⊂ Rn, which has the property that

AP ⊆ P.

Let P ∈ Rn×m be the matrix whose columns form an
orthonormal basis of P . Then η = P>x satisfies the
differential equation

η̇(t) = P>APη(t), η(0) = P>x0 (18)

and has the property that |η(t)| = |x(t)|. Furthermore, η(t) ∈
P for all t ∈ [0,∞).

Proof: We let M := P , and M(t) := e−A
>tP ∈

Rn×(n−m), where P is an orthonormal matrix such that
P
>
P = 0. It then follows that P>P = Im×m, and

M
>

(t)M = P
>
e−AtP = 0(n−m)×m.

where the last inequality follows because e−AtP ∈ P . Thus,(
η(t)
0

)
=
[

M>

M
>
(t)

]
x(t). Since M is orthonormal, and M(t)

is orthogonal to M for each t, we have x = Mη = Pη. The
differential equation for η now follows by differentiating both
sides of η = P>x with respect to time.

A. Invariant Undeterminable Subspace and Switched ODEs
Proposition 17: If Qm∗ given in Theorem 11 is such that

Adiff
k Qm

∗
⊆ Qm

∗
⊆Mk, ∀ k ∈ N (19)

then the switched system (1) is detectable if and only if the
following switched ODE with jumps is asymptotically stable:

η̇(t) = P>AkPη(t) (20a)

η(t+k ) = P>Πk+1Pη(t−k ) (20b)

where P is a matrix whose columns comprise an orthonormal
basis of Qm∗ . C

The proof is not included here due to space constraints,
but we would like to highlight, that the key observation is
that (19) implies

Pk = Qm
∗
∀k ∈ N.

Note that Adiff
k -invariance of all local unobservable spaces

Mk is neither necessary nor sufficient for (19).
The result of Proposition 17 is particularly useful where

one can compute an invariant unobservable subspace. Due to
invariance, the computation of such unobservable subspace
would not depend on the switching times.

B. Special Case: Switched ODEs
In case of switched ODEs with nonsingular jumps, one

can compute this invariant unobservable subspace directly
from the system data and it can be shown that any switching

signal with a periodic mode sequence would result in this
unobservable subspace for almost all switching times [7].
Computing such invariant subspaces for switched DAEs is a
topic of ongoing work.

To be specific, we compute Qm∗ for switched ODEs
without jumps, we assume that the set S, which deter-
mines all possible subsystems of system (1) is of the form
{0, 1, . . . , p}, and that the switching signal σ has a periodic
mode sequence:

σ(tk) = k mod (p + 1). (21)

In the description of system (1), we now let Ek to be the
identity matrix for each k ∈ N. Using the notation 〈V|A〉
to denote the largest A-invariant subspace contained in the
subspace V , one now introduces the sequence of following
subspaces:

V0 := 〈kerC0|A0〉 ∩ 〈kerC1|A1〉 ∩ . . . 〈kerCp|Ap〉
Vi+1 := 〈Vi|A0〉 ∩ 〈Vi|A1〉 ∩ . . . 〈Vi|Ap〉.

Clearly, we have the inclusions V0 ⊇ V1 ⊇ . . . and due
to finite-dimensionality of the state space, there exists a
minimal element of the sequence which we denote by V∗. It
is shown in [7] that V∗ is the unobservable subspace corre-
sponding to a switching signal of the form (21) for almost all
switching times. Clearly, V∗ satisfies the invariance condition
listed in (19) by construction with Adiff

k = Ak. Hence, in
this case the problem of detectability reduces to checking
the stability of the following reduced-order switched ODE:

η̇(t) = P>AkPη(t)

where P now denotes the matrix whose columns comprise
orthonormal basis of the subspace V∗.
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