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Switched DAEs

DAE = Differential algebraic equation

Homogeneous switched linear DAE

Eσ(t)ẋ(t) = Aσ(t)x(t) (swDAE)

or short Eσ ẋ = Aσx

with
switching signal σ : R→ {1, 2, . . . ,N}

piecewise constant
locally finite jumps

matrix pairs (E1,A1), . . . , (EN ,AN)
Ep, Ap ∈ Rn×n, p = 1, . . . , N
(Ep, Ap) regular, i.e. det(Eps − Ap) 6≡ 0

Questions

Existence and nature of solutions?

Ep ẋ = Apx asymp. stable ∀p ?⇒ Eσ ẋ = Aσx asymp. stable
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Example 1

Example 1:

(E1,A1)=

([
0 1
0 0

]
,

[
0 −1
1 −1

])
(E2,A2)=

([
1 1
0 0

]
,

[
−1 −1
1 0

])

x1

x2

x1

x2

Daniel Liberzon and Stephan Trenn Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

On stability of switched DAEs



Introduction Classical DAEs Distributional solutions for switched DAEs Stability of switched DAEs Appendix

Example 2

Example 2:

(E1,A1) =

([
1 0 0
0 1 0
0 0 1

]
,

[
−1 8π 0
π/2 −1 0
0 0 −1

])
(E2,A2) =

([
0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

x1

x2

x3

Switching signal: t
∆t

∆t

1
2

∆t = 1/4
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Example 3

Example 3:

(E1,A1) =
([

1 0 0
0 1 0
0 0 0

]
,
[ −1 2π 0
−2π −1 0

0 0 1

])
(E2,A2) =

([
0 1 0
1 0 1
0 0 0

]
,
[

4π −1 4π
−1 π −1
1 0 0

])

x1

x2

x3

x1

x2

x3

Switching signal: t
∆t

∆t

1
2

∆t = 1/4
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Solutions of classical DAEs

Consider for now non-switched DAE
Eẋ = Ax .

Theorem (Weierstrass 1868)

(E ,A) regular ⇔
∃S ,T ∈ Rn×n invertible:

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,

N nilpotent

Corollary (for regular (E ,A))

x solves E ẋ =Ax ⇔ x(t)=T

(
eJtv0

0

)
Consistency space: C(E ,A) := T

(
∗
0

)

(E ,A) =
([

0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

T =
[

0 4 ∗
1 0 ∗
1 1 ∗

]
, J =

[−1 −4π
π −1

]
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Consistency projectors

x

Π(E ,A)x

C(E ,A)

Definition (Consistency projectors for regular (E ,A))

Let S ,T ∈ Rn×n be invertible with (SET ,SAT ) =
([

I 0
0 N

]
,
[

J 0
0 I

])
:

Π(E ,A) := T

[
I 0
0 0

]
T−1
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Lyapunov functions for regular (E , A)

Definition (Lyapunov function for Eẋ = Ax)

Q = Q
>
> 0 on C(E ,A) and P = P

>
> 0 solves

A>PE + E>PA = −Q (generalized Lyapunov equation)

Lyapunov function V : Rn → R≥0 : x 7→ (Ex)>PEx

Theorem (Owens & Debeljkovic 1985)

Eẋ = Ax asymptotically stable ⇔ ∃ Lyapunov function

Remark (Other definitions for Lyapunov functions)

Other definition for Lyapunov functions are possible, for example

V (x) = (Ex)>Px

where (E ,A) is index one and A>P + P>A = −I , P>E = E>P ≥ 0.
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Intermediate summary: Problems and their solutions

Consider again switched DAE

Eσ ẋ = Aσx (swDAE)

1 Stability criteria for single DAEs Ep ẋ = Apx
⇒ Lyapunov functions

2 No classical solutions for switched DAEs
⇒ Allow for jumps in solutions

3 How does inconsistent initial value “jump” to consistent one?
⇒ Consistency projectors Π(E1,A1), . . . ,Π(EN ,AN )

4 Differentiation of jumps
⇒ Space of Distributions as solution space

5 Multiplication with non-smooth coefficients
⇒ Space of piecewise-smooth distributions
⇒ Existence and uniqueness of solutions
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Asymptotic stability and impulse free solutions

Eσ ẋ = Aσx (swDAE)

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable :⇔
∀ distr. solutions x : limt→∞ x(t) = 0 and x is impulse free

Let Πp := Π(Ep,Ap) be the consistency projectors of (Ep,Ap)

Impulse freeness condition

(IFC): ∀p, q ∈ {1, . . . ,N} : Ep(I − Πp)Πq = 0

Theorem (T. 2009)

(IFC) ⇒ All solutions of Eσ ẋ = Aσx are impulse free
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Stability under arbitrary switching

Consider (swDAE) with additional assumption:

(∃Vp): ∀p ∈ {1, . . . ,N} ∃ Lyapunov function Vp for (Ep,Ap)

i.e. each DAE (Ep,Ap) is asymp. stable

Lyapunov jump condition

(LJC): ∀p, q = 1, . . . ,N ∀x ∈ C(Eq,Aq) : Vp(Πpx) ≤ Vq(x)

Theorem (Liberzon and T. 2009)

(IFC) ∧ (∃Vp) ∧ (LJC) ⇒ (swDAE) asymptotically stable

Examples 1, 2 and 3 all satisfy (IFC) and (∃Vp),
but none fulfills (LJC)
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Jump free switching

Consider special case, where switching does not induce jumps. For
x0 ∈ Rn define

Σx0 :=

 σ : R→ {1, . . . ,N}

∣∣∣∣∣∣∣
∃ solution x of (swDAE)

with x(0) = x0 and

x has no jumps


Weak Lyapunov condition

(wLC): ∀p, q = 1, . . . ,N ∀x ∈ C(Ep,Ap) ∩ C(Eq,Aq) : Vp(x) = Vq(x)

Theorem (Liberzon & T. 2009)

σ ∈ Σx0 ∧ x solution of (swDAE) with x(0) = x0 ∧ (∃Vp) ∧ (wLC)
⇒ x(t)→ 0 and x impulse free
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Examples revisited

Example 1:
(∃Vp) and (wLC) fulfilled
BUT: Σx0 is “empty” when x0 6= 0
i.e.: result not useful here

Example 2:
(∃Vp) and Σx0 6= ∅ for some x0

BUT: (wLC) not satisfied

Example 3:
All conditions fulfilled!
⇒ all jump free solutions converge
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Slow switching

Slow switching signals with dwell time τd > 0:

Στd :=

 σ : R→ {1, . . . ,N}

∣∣∣∣∣∣∣
∀ switching times

ti ∈ R, i ∈ Z :

ti+1 − ti ≥ τ

 .

Theorem (Liberzon & T. 2009)

∃τd > 0 ∀σ ∈ Στd : (IFC) ∧ (∃Vp) ⇒ (swDAE) asymptotically stable

As a reminder:
(IFC): ∀p, q ∈ {1, . . . ,N} : Ep(I − Π(Ep,Ap))Π(Eq,Aq) = 0
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Thanks for your attention!
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Distributional solutions

Example (Inconsistent initial values)[
0 0
1 0

](
ẋ1

ẋ2

)
=

(
x1

x2

)(
⇔

x1 = 0

x2 = ẋ1

)
on [0,∞)(

x1

x2

)
=

(
1
0

)
on (−∞, 0)

Obviously: x1 = 1(−∞,0)

t

x1

x2 =

{
0, auf (−∞, 0)

ẋ1 = −δ0, auf [0,∞)

hence: x2 = −δ0 (Dirac impulse)
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Existence and uniqueness of solutions

In the following: Space of piecewise smooth distributions distributions as
solution space.
Consider Eσ ẋ = Aσx with

σ : R→ {1, . . . ,N}, locally finite jumps
(E1,A1), . . . , (EN ,AN) regular

Theorem (T. 2009)

For each initial trajectory x0 : (−∞, 0)→ Rn exists a unique
distributional solution of

x = x0 on (−∞, 0)

Eσ ẋ = Aσx on [0,∞)

Remark:

x distr. solution of Eσ ẋ = Aσx

⇒ ∀t ∈ R : x(t+) = Π(Eσ(t),Aσ(t))x(t−)
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Calculation of Consistency projectors

Theorem (Quasi-Weierstraß form, Berger, Ilchmann, T. 2009)

Let (E ,A) be regular.

V0 := Rn, Vk+1 := A−1(EVk), k = 0, 1, . . . , k∗

W0 := {0}, Wk+1 := E−1(AWk), k = 0, 1, . . . , k∗.

Let im V = Vk∗ , im W =Wk∗ and T := [V ,W ], S−1 := [EV ,AW ] then

(SET ,SAT ) =

([
I

N

]
,

[
J

I

])
.

Remark:

Vk ⊇ Vk+1 and Wk ⊆ Wk+1

V and W are easily computable (e.g. with a Matlab)

Hence Π(E ,A) = T [ I 0
0 0 ] T−1 easily computable
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Matlab Code for calculating the consistency projectors

Calculating a basis of the pre-image A−1(im S):

function V=getPreImage(A,S)
[m1 ,n1]= size(A); [m2,n2]= size(S);
if m1==m2 | m2==0

H=null ([A,S]);
V=colspace(H(1:n1 ,:));

end;

Calculating V with im V = Vk∗ :

function V = getVspace(E,A)
[m,n]= size(E);
if (m==n) & size(E)== size(A)

V=eye(n,n);
oldsize=n; newsize=n; finished =0;
while finished ==0;

EV=colspace(E*V);
V=getPreImage(A,EV);
oldsize=newsize;
newsize=rank(V);
finished = (newsize == oldsize );

end;
end;

Calculating W with im W =Wk∗ analog.
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