On stability of switched DAEs

Daniel Liberzon and Stephan Trenn

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

The Combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
Wednesday, December 16, 2009, 17:30-17:50, Shanghai, P.R. China

I L L I N O I S
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Contents

(1) Introduction

- System class: Definition and motivation
- Destabilizing examples
(2) Classical DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs

4 Stability of switched DAEs

- Impulse freeness
- Arbitrary switching
- Jump free switching
- Slow switching

Switched DAEs

DAE $=$ Differential algebraic equation

Homogeneous switched linear DAE

$$
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t)
$$

or short $E_{\sigma} \dot{x}=A_{\sigma} x$
with

- switching signal $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, N\}$
- piecewise constant
- locally finite jumps
- matrix pairs $\left(E_{1}, A_{1}\right), \ldots,\left(E_{N}, A_{N}\right)$
- $E_{p}, A_{p} \in \mathbb{R}^{n \times n}, p=1, \ldots, N$
- $\left(E_{\rho}, A_{\rho}\right)$ regular, i.e. $\operatorname{det}\left(E_{\rho} s-A_{\rho}\right) \not \equiv 0$

Questions

Existence and nature of solutions?
$E_{p} \dot{x}=A_{p} x$ asymp. stable $\forall p \stackrel{?}{\Rightarrow} E_{\sigma} \dot{x}=A_{\sigma} x$ asymp. stable

Example 1

Example 1:

$$
\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]\right) \quad\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]\right)
$$

Example 2

Example 2:

$$
\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
-1 & 8 \pi & 0 \\
\pi / 2 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right) \quad\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{lll}
0 & 4 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-4 \pi & -4 & 0 \\
-1 & 4 \pi & 0 \\
-1 & -4 & 4
\end{array}\right]\right)
$$

Switching signal: $\begin{aligned} & 2 \uparrow \Delta t+\square \quad — \\ & 1\end{aligned}$

Example 3

Example 3:

$$
\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-1 & 2 \pi & 0 \\
-2 \pi & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \quad\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
4 \pi & -1 & 4 \pi \\
-1 & \pi & -1 \\
1 & 0 & 0
\end{array}\right]\right)
$$

Switching signal: $\begin{aligned} & 2 \uparrow \Delta t \xrightarrow{2} \uparrow \longrightarrow \longrightarrow\end{aligned} \quad \Delta t=1 / 4$

Contents

Introduction

- System class: Definition and motivation
- Destabilizing examples
(2) Classical DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs
(4) Stability of switched DAEs
- Impulse freeness
- Arbitrary switching
- Jump free switching
- Slow switching

Solutions of classical DAEs

Consider for now non-switched DAE

$$
E \dot{x}=A x .
$$

Theorem (Weierstrass 1868)

(E, A) regular \Leftrightarrow
$\exists S, T \in \mathbb{R}^{n \times n}$ invertible:
$(S E T, S A T)=\left(\left[\begin{array}{cc}I & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & I\end{array}\right]\right)$,
N nilpotent

Corollary (for regular (E, A))

x solves $E \dot{x}=A x \Leftrightarrow x(t)=T\binom{e^{J t} v_{0}}{0}$
Consistency space: $\mathfrak{C}_{(E, A)}:=T\binom{*}{0}$

Consistency projectors

Definition (Consistency projectors for regular (E, A))

Let $S, T \in \mathbb{R}^{n \times n}$ be invertible with $(S E T, S A T)=\left(\left[\begin{array}{cc}1 & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & 1\end{array}\right]\right)$:

$$
\Pi_{(E, A)}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Lyapunov functions for regular (E, A)

Definition (Lyapunov function for $E \dot{x}=A x$)
$Q=\bar{Q}^{\top}>0$ on $\mathfrak{C}_{(E, A)}$ and $P=\bar{P}^{\top}>0$ solves

$$
A^{\top} P E+E^{\top} P A=-Q \quad \text { (generalized Lyapunov equation) }
$$

Lyapunov function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}: x \mapsto(E x)^{\top} P E x$

Theorem (Owens \& Debeljkovic 1985)

$E \dot{x}=A x$ asymptotically stable $\Leftrightarrow \exists$ Lyapunov function

Remark (Other definitions for Lyapunov functions)

Other definition for Lyapunov functions are possible, for example

$$
V(x)=(E x)^{\top} P x
$$

where (E, A) is index one and $A^{\top} P+P^{\top} A=-I, P^{\top} E=E^{\top} P \geq 0$.

Intermediate summary: Problems and their solutions

Consider again switched DAE

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

(1) Stability criteria for single DAEs $E_{p} \dot{x}=A_{p} x$ \Rightarrow Lyapunov functions
(2) No classical solutions for switched DAEs \Rightarrow Allow for jumps in solutions
(3) How does inconsistent initial value "jump" to consistent one?
\Rightarrow Consistency projectors $\Pi_{\left(E_{1}, A_{1}\right)}, \ldots, \Pi_{\left(E_{N}, A_{N}\right)}$
(0) Differentiation of jumps
\Rightarrow Space of Distributions as solution space
(0) Multiplication with non-smooth coefficients
\Rightarrow Space of piecewise-smooth distributions
\Rightarrow Existence and uniqueness of solutions

Contents

(1) Introduction

- System class: Definition and motivation
- Destabilizing examples
(2) Classical DAEs
- Solutions: Consistency and underlying ODE
- Lyapunov functions
(3) Distributional solutions for switched DAEs

4 Stability of switched DAEs

- Impulse freeness
- Arbitrary switching
- Jump free switching
- Slow switching

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable $: \Leftrightarrow$
\forall distr. solutions x : $\lim _{t \rightarrow \infty} x(t)=0$ and x is impulse free
Let $\Pi_{p}:=\Pi_{\left(E_{p}, A_{p}\right)}$ be the consistency projectors of $\left(E_{p}, A_{p}\right)$

Impulse freeness condition

(IFC): $\forall p, q \in\{1, \ldots, N\}: E_{p}\left(I-\Pi_{p}\right) \Pi_{q}=0$

Theorem (T. 2009)

(IFC) \Rightarrow All solutions of $E_{\sigma} \dot{x}=A_{\sigma} x$ are impulse free

Stability under arbitrary switching

Consider (swDAE) with additional assumption:
$\left(\exists \mathbf{V}_{\mathbf{p}}\right): \quad \forall p \in\{1, \ldots, N\} \exists$ Lyapunov function V_{p} for $\left(E_{p}, A_{p}\right)$
i.e. each $\operatorname{DAE}\left(E_{p}, A_{p}\right)$ is asymp. stable

Lyapunov jump condition

(LJC): $\forall p, q=1, \ldots, N \forall x \in \mathfrak{C}_{\left(E_{q}, A_{q}\right)}: \quad V_{p}\left(\Pi_{p} x\right) \leq V_{q}(x)$

Theorem (Liberzon and T. 2009)

$($ IFC $) \wedge\left(\exists \mathbf{V}_{\mathrm{p}}\right) \wedge(\mathrm{LJC}) \Rightarrow($ swDAE $)$ asymptotically stable
Examples 1, 2 and 3 all satisfy (IFC) and ($\exists \mathbf{V}_{\mathbf{p}}$), but none fulfills (LJC)

Jump free switching

Consider special case, where switching does not induce jumps. For $x^{0} \in \mathbb{R}^{n}$ define

$$
\Sigma_{x^{0}}:=\left\{\begin{array}{l|l}
\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} & \begin{array}{l}
\exists \text { solution } x \text { of (swDAE) } \\
\text { with } x(0)=x^{0} \text { and } \\
x \text { has no jumps }
\end{array}
\end{array}\right\}
$$

Weak Lyapunov condition

(wLC): $\forall p, q=1, \ldots, N \forall x \in \mathfrak{C}_{\left(E_{p}, A_{p}\right)} \cap \mathfrak{C}_{\left(E_{q}, A_{q}\right)}: \quad V_{p}(x)=V_{q}(x)$
Theorem (Liberzon \& T. 2009)
$\sigma \in \Sigma_{x^{0}} \wedge x$ solution of (swDAE) with $x(0)=x^{0} \wedge\left(\exists \mathbf{V}_{p}\right) \wedge(w L C)$ $\Rightarrow \quad x(t) \rightarrow 0$ and x impulse free

Examples revisited

Example 1:

$\left(\exists \mathbf{V}_{p}\right)$ and (wLC) fulfilled BUT: $\Sigma_{x^{0}}$ is "empty" when $x^{0} \neq 0$ i.e.: result not useful here

Example 2:
$\left(\exists \mathbf{V}_{\mathbf{p}}\right)$ and $\Sigma_{x^{0}} \neq \emptyset$ for some x^{0} BUT: (wLC) not satisfied

Example 3:
All conditions fulfilled!
\Rightarrow all jump free solutions converge

Slow switching

Slow switching signals with dwell time $\tau_{d}>0$:

$$
\Sigma^{\tau_{d}}:=\left\{\begin{array}{l|l}
\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} & \begin{array}{l}
\forall \text { switching times } \\
t_{i} \in \mathbb{R}, i \in \mathbb{Z}: \\
t_{i+1}-t_{i} \geq \tau
\end{array}
\end{array}\right\}
$$

Theorem (Liberzon \& T. 2009)

$\exists \tau_{d}>0 \forall \sigma \in \Sigma^{\tau_{d}}: \quad(\mathrm{IFC}) \wedge\left(\exists \mathbf{V}_{\mathrm{p}}\right) \Rightarrow(\mathbf{s w D A E})$ asymptotically stable

As a reminder:
(IFC): $\forall p, q \in\{1, \ldots, N\}: E_{p}\left(I-\Pi_{\left(E_{p}, A_{p}\right)}\right) \Pi_{\left(E_{q}, A_{q}\right)}=0$

Thanks for your attention!

Distributional solutions

Example (Inconsistent initial values)

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\binom{\dot{x}_{1}}{\dot{x}_{2}} } & =\binom{x_{1}}{x_{2}}\left(\Leftrightarrow \begin{array}{l}
x_{1}=0 \\
x_{2}=\dot{x}_{1}
\end{array}\right) \quad \text { on }[0, \infty) \\
\binom{x_{1}}{x_{2}} & =\binom{1}{0}
\end{aligned}
$$

Obviously: $x_{1}=\mathbb{1}_{(-\infty, 0)}$

$x_{2}= \begin{cases}0, & \text { auf }(-\infty, 0) \\ \dot{x}_{1}=-\delta_{0}, & \text { auf }[0, \infty)\end{cases}$
hence: $x_{2}=-\delta_{0}$ (Dirac impulse)

Existence and uniqueness of solutions

In the following: Space of piecewise smooth distributions distributions as solution space.
Consider $E_{\sigma} \dot{x}=A_{\sigma} \times$ with

- $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$, locally finite jumps
- $\left(E_{1}, A_{1}\right), \ldots,\left(E_{N}, A_{N}\right)$ regular

Theorem (T. 2009)

For each initial trajectory $x^{0}:(-\infty, 0) \rightarrow R^{n}$ exists a unique distributional solution of

$$
\begin{aligned}
x & =x^{0} & & \text { on }(-\infty, 0) \\
E_{\sigma} \dot{x} & =A_{\sigma} x & & \text { on }[0, \infty)
\end{aligned}
$$

Remark:
x distr. solution of $E_{\sigma} \dot{x}=A_{\sigma} x$

$$
\Rightarrow \quad \forall t \in \mathbb{R}: x(t+)=\Pi_{\left(E_{\sigma(t)}, A_{\sigma(t))}\right.} x(t-)
$$

Calculation of Consistency projectors

Theorem (Quasi-Weierstraß form, Berger, Ilchmann, T. 2009)

Let (E, A) be regular.

$$
\begin{aligned}
\mathcal{V}_{0} & :=\mathbb{R}^{n}, & \mathcal{V}_{k+1} & :=A^{-1}\left(E \mathcal{V}_{k}\right), k=0,1, \ldots, k^{*} \\
\mathcal{W}_{0} & :=\{0\}, & \mathcal{W}_{k+1} & :=E^{-1}\left(A \mathcal{W}_{k}\right), k=0,1, \ldots, k^{*} .
\end{aligned}
$$

Let $\operatorname{im} V=\mathcal{V}_{k^{*}}, \operatorname{im} W=\mathcal{W}_{k^{*}}$ and $T:=[V, W], S^{-1}:=[E V, A W]$ then

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
1 & \\
& N
\end{array}\right],\left[\begin{array}{ll}
J & \\
& 1
\end{array}\right]\right) .
$$

Remark:

- $\mathcal{V}_{k} \supseteq \mathcal{V}_{k+1}$ and $\mathcal{W}_{k} \subseteq \mathcal{W}_{k+1}$
- V and W are easily computable (e.g. with a Matlab)
- Hence $\Pi_{(E, A)}=T\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] T^{-1}$ easily computable

Matlab Code for calculating the consistency projectors

Calculating a basis of the pre-image $A^{-1}(\mathrm{im} \mathrm{S})$:

```
function V=getPreImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2 | m2==0
    H=null([A,S]);
    V=colspace(H(1:n1,:));
end;
```

Calculating V with $\operatorname{im} V=\mathcal{V}_{k^{*}}$:

```
function V = getVspace(E,A)
[m,n]=size(E);
if (m==n) & size(E)== size(A)
    V=eye(n,n);
    oldsize=n; newsize=n; finished=0;
    while finished==0;
        EV=colspace(E*V);
        V=getPreImage(A,EV);
        oldsize=newsize;
        newsize= rank(V);
        finished = (newsize==oldsize);
    end;
end;
```

Calculating W with $\operatorname{im} W=\mathcal{W}_{k^{*}}$ analog.

