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Feedback loop

ẋ = F (x , u)

y = H(x)
y

Switching
logic

+ −yref

Funnel
U+U−

eq

u

Reference signal yref : R≥0 → R absolutely continuous
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The funnel

Control objective

Error e := y − yref evolves within funnel

F = F(ϕ−, ϕ+) := { (t, e) | ϕ−(t) ≤ e ≤ ϕ+ }

where ϕ± : R≥0 → R absolutely continuous

t

ϕ+(t)

ϕ−(t)
F

time-varying strict error
bound

transient behaviour

practical tracking
(|e(t)| < λ for t >> 0)
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Background on the continuous funnel controller

Continuous funnel controller

u(t) = −k(t)e(t)

k(t) =
1

dist(e(t), ∂F(t))
ϕ+=ϕ=−ϕ−

=
1

ϕ(t)− |e(t)|

Introduced by Ilchmann et al. in 2002, based on ideas from
high gain adaptive control (k̇(t) = e2

(t))
lambda tracking (k̇(t) = e2

(t) or k̇(t) = 0 if |e(t)| ≤ λ)

the work by Miller & Davison from 1991 (k(t) = kσ(t) with e.g.

ki = (−3)
i
)

Independent of the system’s parameters & reference signal

Guaranteed transient performance & practical tracking

Disadvantages of the original funnel controller:
Only works for relative degree one systems

Input constraints ⇒ feasibility assumptions
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The bang-bang funnel controller

New approach

Achieve control objectives with bang-bang control, i.e. u(t) ∈ {U−,U+}

ẋ = F (x , u)

y = H(x)
y

Switching
logic

+ −yref

Funnel
U+U−

eq

u

Stephan Trenn (joint work with Daniel Liberzon) Institute for Mathematics, University of Würzburg, Germany

The bang-bang funnel controller



Introduction Relative degree one case Relative degree two case Higher relative degree Simulations and Experiments Conclusions

Relative degree one

Definition (Relative degree one)

ẋ = F (x , u)

y = H(x)
∼= ẏ = f (y , z) +

>0� �� �
g(y , z) u

ż = h(y , z)

Structural assumption

f , g , h can be unknown

feasibility assumption (later) in terms of f , g , h and funnel

Important property

u(t) << 0 ⇒ ẏ(t) << 0

u(t) >> 0 ⇒ ẏ(t) >> 0
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Switching logic

e(t)

t

ϕ+(t)

ϕ−(t)

e(0)

u(t) = U
+

u(t) = U
−

u(t) = U
+

F
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Switching logic

u(t) = U− u(t) = U+

e(t) ≤ ϕ−(t)

e(t) ≥ ϕ+(t)

e(t) > ϕ−(t)

e(t) < ϕ+(t)

Too simple?

⇒ Feasibility assumptions
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Feasibility assumptions

ẏ = f (y , z) + g(y , z)u, y0 ∈ R
ż = h(y , z), z0 ∈ Z0 ⊆ Rn−1

Zt :=





z(t)

���������

z : [0, t] → Rn−1 solves ż = h(y , z) for some

z
0 ∈ Z0 and for some y : [0, t] → R

with ϕ−(τ) ≤ y(τ)− yref(τ) ≤ ϕ+(τ)

∀τ ∈ [0, t]





.

Feasibility assumption

∀t ≥ 0 ∀zt ∈ Zt :

U− <
ϕ̇+(t) + ẏref(t)− f (yref(t) + ϕ+(t), zt)

g(yref(t) + ϕ+(t), zt)

U+ >
ϕ̇−(t) + ẏref(t)− f (yref(t) + ϕ−(t), zt)

g(yref(t) + ϕ−(t), zt)
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Main result relative degree one

Theorem (Bang-bang funnel controller)

Relative degree one + Funnel & simple switching logic + Feasibility

⇒
Bang-bang funnel controller works:

existence and uniqueness of global solution

error remains within funnel for all time

no zeno behaviour

Necessary knowledge:
for controller implementation:

relative degree (one)

signals: error e(t) and funnel boundaries ϕ±(t)

to check feasibility:
bounds on zero dynamics

bounds on f and g
bounds on yref and ẏref

bounds on the funnel
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Relative degree two

Definition (Relative degree two)

ẋ = F (x , u)

y = H(x)
∼= ÿ = f (y , ẏ , z) +

>0� �� �
g(y , ẏ , z) u

ż = h(y , ẏ , z)

Important property

u(t) << 0 ⇒ ÿ(t) << 0

u(t) >> 0 ⇒ ÿ(t) >> 0
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Feedback loop

ẋ = F (x , u)

y = H(x)
y

Switching
logic

+ −yref

Funnels
U+U−

e, ėq

u
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The switching logic

e(t)

t

ϕ+(t)

ϕ−(t)
F

decrease e increase e decrease e
ė(t)

t

ϕd
+(t)

ϕd
−(t)

ϕ̇−(t)

ϕ̇+(t)

Fd

U− U+

ė(t) ≤ ϕd
−(t)ė(t) ≤ ϕd
−(t)

ė(t) ≥ ϕ̇+(t)ė(t) ≥ ϕ̇+(t)

decrease e

U+ U−

ė(t) ≥ ϕd
+(t)

ė(t) ≤ ϕ̇−(t)

increase e

e(t) ≤ ϕ−(t) + ε+e(t) ≤ ϕ−(t) + ε+ e(t) ≥ ϕ+(t)− ε+e(t) ≥ ϕ+(t)− ε+
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Feasibility assumptions

Funnels F(ϕ+, ϕ−), Fd(ϕd
+, ϕd

−)
Security distances ε+, ε− > 0

Feasibility of funnels

∀t ≥ 0 : ϕ+(t)− ε+ > 0 and ϕ−(t) + ε− < 0

∀t ≥ 0 : ϕd
+(t) > ϕ̇−(t) and ϕd

−(t) < ϕ̇+(t)

ÿ = f (y , ẏ , z) + g(y , ẏ , z)u

ż = h(y , ẏ , z)

Zt := { z(t) | z solves ż = h(y , ẏ , z), z(0) ∈ Z0 }
Choose δ± > 0 such that

δ+ > max{ϕ̇d
−(t), ϕ̈−(t)} and

−δ− < min{ϕ̇d
+(t), ϕ̈+(t)} ∀t ≥ 0
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Feasibility assumptions

Feasibility assumption 1

U− <
−δ− + ÿref(t) + f (yt , ẏt , zt)

g(yt , ẏt , zt)
,

U+ >
δ+ + ÿref(t) + f (yt , ẏt , zt)

g(yt , ẏt , zt)
,

∀t ≥ 0, ∀yt ∈ [yref(t) + ϕ−(t), yref(t) + ϕ+(t)],
∀ẏt ∈ [ẏref(t) + ϕd

−(t), ẏref(t) + ϕd
+(t)], ∀zt ∈ Zt

Feasibility assumption 2

ε+ ≥
(�ϕd

−�+ �min{ϕ̇+, 0}�)2

2δ−

ε− ≥
(�ϕd

+�+ �max{ϕ̇−, 0}�)2

2δ+
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Main result relative degree two

Theorem (Bang-bang funnel controller)

Relative degree two + Funnels & simple switching logic + Feasibility

⇒
Bang-bang funnel controller works:

existence and uniqueness of global solution

error and its derivative remain within funnels for all time

no zeno behaviour
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Higher relative degree (work in progress ...)

ẋ = F (x , u)

y = H(x)
y

Switching
logic

+ −yref

r Funnels
U+U−

e, ė, ..., e
(r -1)q

u
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Switching logic

U−

U+ë
(t

)
≥

m
in
{ϕ̈

+ 0
(t

),
−

λ
− 3
}
−

ε+ 1

ë
(t)
≤

ϕ
−2

(t)
+

ε −1

decrease ė

U−

U+

ë
(t

)
≥

ϕ
+ 2
(t

)
−

ε+ 1

ë
(t)
≤

m
ax{ϕ̇

+1
(t),−

λ
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+
ε −1

inccrease ė

U−

U+ë
(t

)
≥

m
in
{ϕ̇

+ 1
(t

),
−

λ
− 3
}
−

ε+ 1

ë
(t)
≤

ϕ
−2

(t)
+

ε −1

decrease ė

U−

U+

ë
(t

)
≥

ϕ
+ 2
(t

)
−

ε+ 1

ë
(t)
≤

m
ax{ϕ̈

−0
(t),−

λ
+3 }

+
ε −1

inccrease ė

ė(t) ≤ ϕ−1 (t) + ε−2

ė(t) ≥ min{ϕ̇+
0 (t),−λ−2 } − ε+

2

ė(t) ≤ max{ϕ̇+
0 (t), λ+

2 } + ε−2

ė(t) ≥ ϕ+
1 (t)− ε+

2

decrease e increase e

e(t) ≤ ϕ−0 (t) + ε−3

e(t) ≥ ϕ+
0 (t)− ε+

3
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Model of exothermic chemical reactions

Model from [Ilchmann & T. 2004]:

ẏ = br(z1, z2, y)− qy + u,

ż1 = c1r(z1, z2, y) + d(z in
1 − z1),

ż2 = c2r(z1, z2, y) + d(z in
2 − z2),

b ≥ 0, q > 0, c1 < 0, c2 ∈ R, d > 0,
z in
1/2 ≥ 0

r : R≥0 × R≥0 × R>0 → R≥0 locally
Lipschitz with r(0, 0, y) = 0 ∀y > 0

yref = y∗ > 0
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Feasibility assumptions from [IT 2004] imply feasibility for bang-bang
funnel controller if

ϕ+(t) ∈ (0, y − y
∗], ϕ−(t) ∈ (−y

∗, 0),

ϕ̇+(t) > −ρ−, ϕ̇−(t) < ρ+,

Stephan Trenn (joint work with Daniel Liberzon) Institute for Mathematics, University of Würzburg, Germany

The bang-bang funnel controller



Introduction Relative degree one case Relative degree two case Higher relative degree Simulations and Experiments Conclusions

Relative degree two experimental setup

Planned ...

Control objective

Tracking of a reference angular speed with unknown/varying load
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Relative degree 4 simulations

e(t)

ė(t)

ë(t)

...
e (t)
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Relative degree 4 simulations

yref: blue
y : green
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Conclusion

Introduced new controller design: Bang-bang funnel controller
Design only depends on relative degree

extremely simple

Feasibility assumptions
U+, U− must be large enough

in terms of bounds on systems dynamics

higher perfomance ⇒ larger values for U+, U−

Switching dwell times can be guaranteed

Higher relative degree (work in progress)
Switching logic remains simple (hierarchically)

Feasibility assumptions get more complicated

Switching times increase significantly (exponentially?)
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