The bang-bang funnel controller

Stephan Trenn (joint work with Daniel Liberzon)

Institute for Mathematics, University of Würzburg, Germany

Research seminar, University of Waterloo, ON, Canada, 07/27/2010

Introduction	Relative degree one case	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O
Conte	nt				UNI WÜ

- 2 Relative degree one case
- 3 Relative degree two case
- 4 Higher relative degree
- **5** Simulations and Experiments

Introduction ●000	Relative degree one case	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O
Feedb	ack loop				UNI WÜ

Reference signal $y_{ref} : \mathbb{R}_{\geq 0} \to \mathbb{R}$ absolutely continuous

Stephan Trenn (joint work with Daniel Liberzon)

Introduction ○●○○	Relative degree one case	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions
The fu	unnel				UNI WÜ

Control objective

Error $e := y - y_{ref}$ evolves within *funnel*

$$\mathcal{F}=\mathcal{F}(arphi_-,arphi_+):=\{ \ (t,e) \ \mid arphi_-(t)\leq e\leq arphi_+ \ \}$$

where $\varphi_\pm:\mathbb{R}_{\geq 0}\to\mathbb{R}$ absolutely continuous

- time-varying strict error bound
- transient behaviour
- practical tracking $(|e(t)| < \lambda \text{ for } t >> 0)$

Stephan Trenn (joint work with Daniel Liberzon)

Continuous funnel controller

$$egin{aligned} &u(t)=-k(t)e(t)\ &k(t)=rac{1}{ ext{dist}(e(t),\partial\mathcal{F}(t))} \stackrel{arphi^+=arphi=-arphi^-}{=}rac{1}{arphi(t)-ert e(t)ert} \end{aligned}$$

- Introduced by Ilchmann et al. in 2002, based on ideas from
 - high gain adaptive control $(k(t) = e^2(t))$
 - lambda tracking $(\dot{k}(t) = e^2(t) \text{ or } \dot{k}(t) = 0 \text{ if } |e(t)| \le \lambda)$
 - the work by Miller & Davison from 1991 $(k(t) = k_{\sigma(t)}$ with e.g. $k_i = (-3)^i$)
- Independent of the system's parameters & reference signal
- Guaranteed transient performance & practical tracking
- Disadvantages of the original funnel controller:
 - Only works for relative degree one systems
 - Input constraints \Rightarrow feasibility assumptions

New approach

Achieve control objectives with bang-bang control, i.e. $u(t) \in \{U_-, U_+\}$

Stephan Trenn (joint work with Daniel Liberzon)

Introduction	Relative degree one case ●○○○○	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O
Relativ	ve degree or	ne			UNI WÜ

Definition (Relative degree one)

$$\dot{x} = F(x, u) y = H(x)$$

$$\begin{aligned} & \Rightarrow \qquad \dot{y} = f(y, z) + \overbrace{g(y, z)}^{} u \\ & \dot{z} = h(y, z) \end{aligned}$$

- Structural assumption
- f,g,h can be unknown
- feasibility assumption (later) in terms of f, g, h and funnel

Important property

$$\begin{array}{ll} u(t) << 0 & \Rightarrow & \dot{y}(t) << 0 \\ u(t) >> 0 & \Rightarrow & \dot{y}(t) >> 0 \end{array}$$

>0

Introduction	Relative degree one case ○●○○○	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O
Switch	ning logic				UNI WÜ

Introduction	Relative degree one case ○○●○○	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O
Switcl	hing logic				UNI WÜ

Too simple?

Stephan Trenn (joint work with Daniel Liberzon)

$$\begin{split} \dot{y} &= f(y,z) + g(y,z)u, \qquad y_0 \in \mathbb{R} \\ \dot{z} &= h(y,z), \qquad z_0 \in Z_0 \subseteq \mathbb{R}^{n-1} \\ Z_t &:= \left\{ \begin{array}{l} z(t) \\ with \ \varphi_-(\tau) \leq y(\tau) - y_{\text{ref}}(\tau) \leq \varphi_+(\tau) \\ \forall \tau \in [0,t] \end{array} \right\}. \end{split}$$

Feasibility assumption

$$\forall t \ge 0 \ \forall z_t \in Z_t : \qquad \begin{aligned} & U_- < \frac{\dot{\varphi}_+(t) + \dot{y}_{\text{ref}}(t) - f(y_{\text{ref}}(t) + \varphi_+(t), z_t)}{g(y_{\text{ref}}(t) + \varphi_+(t), z_t)} \\ & U_+ > \frac{\dot{\varphi}_-(t) + \dot{y}_{\text{ref}}(t) - f(y_{\text{ref}}(t) + \varphi_-(t), z_t)}{g(y_{\text{ref}}(t) + \varphi_-(t), z_t)} \end{aligned}$$

Stephan Trenn (joint work with Daniel Liberzon)

The bang-bang funnel controller

A

 Introduction
 Relative degree one case
 Relative degree two case
 Higher relative degree
 Simulations and Experiments
 Conclusions

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 Main result relative degree one
 0000
 0000
 0000
 0000
 0000
 0000

Theorem (Bang-bang funnel controller)

Relative degree one + Funnel & simple switching logic + Feasibility \Rightarrow

Bang-bang funnel controller works:

- existence and uniqueness of global solution
- error remains within funnel for all time
- no zeno behaviour

Necessary knowledge:

- for controller implementation:
 - relative degree (one)
 - signals: error e(t) and funnel boundaries $arphi_{\pm}(t)$
- to check feasibility:
 - bounds on zero dynamics
 - bounds on f and g
 - bounds on y_{ref} and \dot{y}_{ref}
 - bounds on the funnel

Introduction	Relative degree one case	Relative degree two case ●000000	Higher relative degree	Simulations and Experiments	Conclusions
Conte	nt				UNI WÜ

1 Introduction

2 Relative degree one case

3 Relative degree two case

- 4 Higher relative degree
- 5 Simulations and Experiments

6 Conclusions

Intr 00	oduction	Relative degree one case	Relative degree two case ○●○○○○○	Higher relative degree	Simulations and Experiments	Conclusions O
R	elativ	ve degree tv	VO			UNI WÜ

Definition (Relative degree two)

Important property

 $\begin{array}{ll} u(t) << 0 & \Rightarrow & \ddot{y}(t) << 0 \\ u(t) >> 0 & \Rightarrow & \ddot{y}(t) >> 0 \end{array}$

Stephan Trenn (joint work with Daniel Liberzon)

Introduction	Relative degree one case	Relative degree two case ○○●○○○○	Higher relative degree	Simulations and Experiments	Conclusions
Feedb	ack loop				UNI WÜ

Introduction	Relative degree one case	Relative degree two case ○○○●○○○	Higher relative degree	Simulations and Experiments	Conclusions
The sv	witching log	ic			UNI WÜ

Introduction	Relative degree one case	Relative degree two case ○○○○●○○	Higher relative degree	Simulations and Experiments	Conclusions O
Feasib	ility assump	otions			UNI WÜ

Funnels $\mathcal{F}(\varphi_+, \varphi_-)$, $\mathcal{F}^d(\varphi_+^d, \varphi_-^d)$ Security distances $\varepsilon^+, \varepsilon^- > 0$

Feasibility of funnels

•
$$\forall t \ge 0$$
: $\varphi_+(t) - \varepsilon_+ > 0$ and $\varphi_-(t) + \varepsilon_- < 0$

• $\forall t \geq 0: \quad \varphi^d_+(t) > \dot{arphi}_-(t) \quad \text{and} \quad \varphi^d_-(t) < \dot{arphi}_+(t)$

$$\ddot{y} = f(y, \dot{y}, z) + g(y, \dot{y}, z)u$$
$$\dot{z} = h(y, \dot{y}, z)$$

 $Z_t := \{ z(t) \mid z \text{ solves } \dot{z} = h(y, \dot{y}, z), z(0) \in Z_0 \}$ Choose $\delta_{\pm} > 0$ such that

$$egin{aligned} &\delta_+>\max\{\dot{arphi}^d_-(t),\ddot{arphi}_-(t)\} & ext{and} \ &-\delta_-<\min\{\dot{arphi}^d_+(t),\ddot{arphi}_+(t)\} & orall t\geq 0 \end{aligned}$$

Introduction	Relative degree one case	Relative degree two case ○○○○○●○	Higher relative degree	Simulations and Experiments	Conclusions O
Feasib	ility assump	otions			UNI WÜ

Feasibility assumption 1

$$\begin{split} & U_{-} < \frac{-\delta_{-} + \ddot{y}_{\text{ref}}(t) + f(y_{t}, \dot{y}_{t}, z_{t})}{g(y_{t}, \dot{y}_{t}, z_{t})}, \\ & U_{+} > \frac{\delta_{+} + \ddot{y}_{\text{ref}}(t) + f(y_{t}, \dot{y}_{t}, z_{t})}{g(y_{t}, \dot{y}_{t}, z_{t})}, \end{split}$$

$$\begin{aligned} \forall t \geq 0, \quad \forall y_t \in [y_{\mathsf{ref}}(t) + \varphi_-(t), y_{\mathsf{ref}}(t) + \varphi_+(t)], \\ \forall \dot{y}_t \in [\dot{y}_{\mathsf{ref}}(t) + \varphi_-^d(t), \dot{y}_{\mathsf{ref}}(t) + \varphi_+^d(t)], \quad \forall z_t \in Z_t \end{aligned}$$

Feasibility assumption 2

$$arepsilon_+ \ge rac{(\|arphi_-^d\| + \|\min\{\dot{arphi}_+, 0\}\|)^2}{2\delta_-} \ arepsilon_- \ge rac{(\|arphi_+^d\| + \|\max\{\dot{arphi}_-, 0\}\|)^2}{2\delta_+}$$

Stephan Trenn (joint work with Daniel Liberzon)

Institute for Mathematics, University of Würzburg, Germany

Theorem (Bang-bang funnel controller)

Relative degree two + Funnels & simple switching logic + Feasibility \Rightarrow

Bang-bang funnel controller works:

- existence and uniqueness of global solution
- error and its derivative remain within funnels for all time
- no zeno behaviour

Introduction	Relative degree one case	Relative degree two case	Higher relative degree ●○○	Simulations and Experiments	Conclusions
Conte	nt				UNI WÜ

Introduction

2 Relative degree one case

3 Relative degree two case

4 Higher relative degree

5 Simulations and Experiments

6 Conclusions

Introduction	Relative degree one case	Relative degree two case	Higher relative degree ○○●	Simulations and Experiments	Conclusions O
Switch	ning logic				UNI WÜ

Introduction	Relative degree one case	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions O	
Conte	nt				UNI WÜ	

Introduction

2 Relative degree one case

3 Relative degree two case

4 Higher relative degree

5 Simulations and Experiments

6 Conclusions

Stephan Trenn (joint work with Daniel Liberzon)

Feasibility assumptions from [IT 2004] imply feasibility for bang-bang funnel controller if

$$egin{aligned} arphi_+(t)\in(0,\overline{y}-y^*], & arphi_-(t)\in(-y^*,0), \ \dotarphi_+(t)>-
ho_-, & \dotarphi_-(t)<
ho_+, \end{aligned}$$

Planned ...

Control objective

Tracking of a reference angular speed with unknown/varying load

Stephan Trenn (joint work with Daniel Liberzon)

Introduction	Relative degree one case	Relative degree two case	Higher relative degree	Simulations and Experiments	Conclusions •
Conclu	usion				UNI WÜ

- Introduced new controller design: Bang-bang funnel controller
 - Design only depends on relative degree
 - extremely simple
- Feasibility assumptions
 - U_+, U_- must be large enough
 - in terms of bounds on systems dynamics
 - higher perfomance \Rightarrow larger values for U_+, U_-
- Switching dwell times can be guaranteed
- Higher relative degree (work in progress)
 - Switching logic remains simple (hierarchically)
 - Feasibility assumptions get more complicated
 - Switching times increase significantly (exponentially?)