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Introduction
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Standard modeling of circuits L

i
+
u L
d - 1
1 IL = —7uc
qailL =1y ddt 1L
artc = ¢l

General form: %X = Ax + Bu
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Introduction
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Switched ODE?

i
. d; 1
. Mode 1: qilL = Tu
L ur g )
u C uc Mode 2: &ip = —fuc
d _
Ic adc =7l

No switched ODE

Not possible to write as ’x(t) = As(t)X + By(ryu ‘
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Introduction
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Include algebraic equations in description L

With x := (i, up, ic, uc) write each mode as:

Epx = Apx + Byu

Algebraic equations = E, singular

Mode 1: L%iL:UL, C%UC:ic,O:Uqu,OiI.C

L 00 0 0100 0
000 C|l. o010 0
000 0/ lo1 o0 ofX"|-1|"
000 0 0010 0

Mode 2: L%iL:uL, C%uc:ic,O:iLfiC,O:uLJruc
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Switched DAEs ™

DAE = Differential algebraic equation

Switched DAE
Eo(yX(t) = Ag(eyx(t) + Byryu(t) (swDAE)
or short E,x = Asx + Byu
with
@ switching signal 0 : R — {1,2,...,p}
e piecewise constant

o locally finite jumps

e modes (E1, A1, Br),. .., (E Ap, Bp)

@ input u: R — R™

Existence and nature of solutions?
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Simpler example

en ) i

non-switched:
X2
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Observations -

@ Modes have constrained dynamics: Consistency spaces
e Switching = Inconsistent initial values

@ Inconsistent initial values = Jumps in x

@ Common Lyapunov function not sufficient

@ Overall stability depend on jumps

Impulses

@ Switching = Dirac impulses in solution x

@ Dirac impulse = infinite peak = Instability
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Introduction
Impulse example L
I'/_ iL
u ur L u up L

inductivity law: L%I'[_ =u

switch dependent: 0 =wu;, —u or 0=
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Introduction
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Impulse example o]

x = [ir,u] " x = [ig,u] "

o o5 =[3 o]l
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Solution of example L

L%I‘L:UL, OZUL7UOI’0:I.L

Assume: u constant, i (0) =0
1, t<ts

)

switch at t; > 0: o(t) =
2, t >t

ug(t) ir(t)

W
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Distributions as solutions
@00

Distribution theorie - basic ideas ]

Distributions - overview

@ Generalized functions
@ Arbitrarily often differentiable

@ Dirac-Impulse dg is “derivative” of jump function 1y )

Two different formal approaches

© Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)

@ Axiomatic: Space of all "derivatives” of continuous functions
(J. Sebastido e Silva 1954)
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Distributions as solutions
o] o}

Distributions - formal ]

Definition (Test functions)

Cs° i ={¢:R—R | ¢is smooth with compact support }

Definition (Distributions)
D:={D:C§° — R | Dis linear and continuous }

Definition (Regular distributions)

felio(R—R): f:C° =R, o [ f(t)p(t)dt €D

Definition (Derivative) Dirac Impulse at tp € R

D'(p) := =D(¢') 0 1 C5° = R, ¢ = ¢(to)
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Distributions as solutions
[e]e] J

Multiplication with functionen w

Definition (Multiplication with smooth functions)

a€C>®: (aD)(p):= D(ay)

(swDAE) E,x = A,x+ B,u

Coefficients not smooth
Problem: E,, Ay, B, ¢ C*™

Observation:

E;x=A,x+ B,

ieZ: opay=p O €L (BXinny = (At Byt

New question: Restriction of distributions
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Distributions as solutions
000

Desired properties of distributional restriction L
Distributional restriction:
{MCR | Minterval } xD—D, (M,D)— Dy

and for each interval M C R
@ D +— Dy is a projection (linear and idempotent)
Q@ Viclijo: ()w=(fup

suppp CM = Du(p) = D(¢)
supppNM=0 = Du(e)=0

Q (M;)ien pairwise disjoint, M = J;.y M

Q@ Vy e (e
Dyv,um, = Dy, + Dy, Dy = Z Dw;,  (Dmy)p, =0
ieN

Such a distributional restriction does not exist.
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Distributions as solutions
o] lo}
UNI
WU

Proof of non-existence of restriction

Consider the following distribution(!):

Di:zdi(;d” di == =
ieN i+l o4

e 0|
e~ ~im

(—

o

Restriction should give

ok Ody,
keN
Choose ¢ € C5° such that pp 1) = 1
1
Z ok = Z 2k + 1
keN keN
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Distributions as solutions
[ele] J
= UNI
Dilemma L

Switched DAEs Distributions

@ Examples: distributional
solutions

@ Distributional restriction not
possible

@ Multiplication with non-smooth

@ Multiplication with non-smooth gy .
coefficients not possible

coefficients o
@ Initial value problems cannot be

@ Or: Restriction on intervals
formulated

Underlying problem

Space of distributions too big.
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Distributions as solutions
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Piecewise smooth distributions ]

Define a suitable smaller space:

Definition (Piecewise smooth distributions Dp,ce )

f € Cons
Dowee =< fp + Z D; T C R locally finite, _
teT VieT: D=3, afég')
i)
th 1
‘I‘Dfl Dtiu
ti—1 t; tit1
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Properties of Dp,ce L

C;V?/ ugvv Dpwcw
D S Dpwcx = D/ € DPWCCX’

Restriction Dpycoe — Dpwe~, D +— Dy for all intervals M C R well
defined

Multiplication with C3-functions well defined
Left and right sided evaluation at t € R: D(t—), D(t+)
Impulse at t € R: DJ[t]

(swDAE) E,x = Asx+ Bou  with input u € (Dpuce)™

Application to (swDAE)
x solves (swWDAE) & x € (Dpwe~)" and (swDAE) holds in Dy
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Distributions as solutions
ooe

Relevant questions )

Consider E,x = Asx + B, u with regular matrix pairs (Ep, Ap).
@ Existence of solutions?
Uniqueness of solutions?
Inconsistent initial value problems?

°
°

@ Jumps and impulses in solutions?

@ Conditions for impulse free solutions?
°

Stability

Theorem (Existence and uniqueness)

Vx% € (Dpwe=)" Vg € R Vu € (Dpwe=)™ I'x € (Dpwe=)":

X(fOOA,to) = XO(*OO,to)

(Eok)[to,oo) = (AO—X aF BUU)[to,oo)

Remark: x is called consistent solution < E x = As;x + B,u
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Regularity & Solution formulas
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Contents EW

© Regularity of matrix pairs and solution formulas
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Regularity & Solution formulas
0@000000

Regularity: Definition and characterization w

Definition (Regularity)
(E,A) regular & det(sE — A) #0

Theorem (Characterizations of regularity)

The following statements are equivalent:
o (E,A) is regular.
e 1S, T € R™ " jnvertible which yield quasi-Weierstrass form

(SET75AT):([(/) ’(\)’}{é (,’D (QWF)

where N is a nilpotent matrix.

@ V smooth f 3 classical solution x of Ex = Ax + f which is uniquely
given by x(ty) for any ty € R.

@ x solves Ex = Ax and x(0) =0 = x=0.
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Wong sequences and the quasi-Weierstrass form w

(SET,SAT)_({(IJ ,ﬂ{é ‘I)D (QWF)

Theorem ([Armentano '86], [Berger, lichmann, T. '10])

For regular (E, A) define the Wong sequences
Vil .= ATYEVY), VO .=R",
Wit .= 7AW, WP = {0}.

Then Vi ™% v+ and Wi "5 W+ Choose V, W such that imV = V*
and im W = W* than

T:=[V,W], S:=[EV,AW]|!
yield (QWF ).
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Regularity & Solution formulas
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Consistency projector w

(SET.,SAT)—({(I] /(\)/}B ?D (QWF)

Definition (Consistency projector)

Let (E, A) be regular with (QWF), consistency projector:

I 0]
N(e ) :—T{O O]T 1

Theorem

x solves E,x = A,x = VteR:

x(t+) = Mg, a)x(t—), q:=o(t+)
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Regularity & Solution formulas
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Differential projector w

(SET,SAT)(LQ ’?/}B (/)D (QWF)

Definition (Differential projector)
Let (E, A) be regular with (QWF), differential projector:

diff A I 0
TR = T{O ol S

AST . 987 A

)

x solves E,x = A,x = VteR:

x(t+) = ASfx(t+)
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Regularity & Solution formulas
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Impulse projector )

(SET,SAT):(LI) ,‘”B ?D (QWF)

Definition (Impulse projector)
Let (E, A) be regular with (QWF), impulse projector:

@ . |0 O
Ty .T{O /}5

=)

x solves E,x = A,x = VteR:
n—2

x[t] = Y (ERP )T x(t+) — x(2-))of”

i=0

E

Stephan Trenn Institute for Mathematics, University of Wiirzburg, Germany

Modeling electrical circuits with switched differential algebraic equations



Regularity & Solution formulas
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Solution formula, inhomogeneous non-switched case )
I 0] [J O
sersm-([0 02 9) awn
Nee.a =T[5l T n?ng) =T[43]S, ni(rE?A) =TI[391S,
AT = NGE A, E™ =

Theorem (Explicit solution formula, non-switched)
x solves Ex=Ax+f & dceR"VteR:

n—1

t
diff diff( . ; N i ;
x(t) = e t”(E,A)C+/O e (= INIE  F(s)ds =Y (E™P) M, 1 (¢)
i=0
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Regularity & Solution formulas
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Jumps and impulses for switched DAE )
E;x =Asx+ B,u (swDAE)
B;mp = I_Ii(nés,Aq)Bq, ge{l,...,p}

Theorem (Jumps and impulses)
x solves (swDAE) = VteR:

x(t+) = ﬂ(EmAq)x(t—) = i(E(i?mp) Blmp ()( t+),
i=0
n—1
A=~ S (EP( e ag(t) 6 qi=o(e4)
i=0

- Z Elmp i+1 Z Blmp j) 0+) ()
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Stability
[ Jelele]

Asymptotic stability m

E,x = Asx (swDAEhom)

Definition (Asymptotic stability)

(swDAEhom) asymptotically stable :& ¥ solutions x € (Dpuce)”
(S) Ve>030>0: [x(0-)|<d =Vt>0: |[x(t1)| <e,

(A) x(t£) — 0 as t — oo,

() Vt>0: x[t]=0.

Theorem (Impulse-freeness)

Vp, qc {1/ 000 ,p} o Eq(/ — I_I(Eq-,Aq))n(Ep.Ap) =0 = (I)
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Lyapunov functions w

Consider non-switched DAE

Ex = Ax

with consistency space V*

Definition (Lyapunov function for Ex = Ax)

Q=Q" >00nV*and P=PT > 0 solves

ATPE + ETPA= —Q (generalized Lyapunov equation)
Lyapunov function V : R” — Rsq : x — (Ex) " PEx
LV(x) = (Ex)TPEx + (Ex) T PEx = x (AT PE + ET PA)x = —x Qx

Theorem (Owens & Debeljkovic 1985)

Ex = Ax asymptotically stable < 3 Lyapunov function
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Stability
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Stability under arbitrary switching o

Consider E,x = A,x with additional assumption:

(3V,): VYpe{l,...,N} 3 Lyapunov function V) for (E,, Ap)
i.e. each DAE (Ep, A,) is asymp. stable

(IFC) Vp,q € {1,,/\/} Eq(l— I'I(Eqqu))l_I(Ep_Ap) =0

Lyapunov jump condition
(LIC):Vp,g=1,... NVx e &g a): Vp(Mpx) < V4(x)

Theorem (Liberzon and T. 2009)
(IFC) A (3V,p) A (LIC) = (swDAE) asymptotically stable
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Stability
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Slow switching w

Slow switching signals with average dwell time 7, > 0:
il ::{aez ‘ N > 0Vt € RYAL>0: Ny(t,t+ At) < No + At }

where N, (t1, t2) is the number of switches in interval [t1, t)

Theorem (Liberzon & T. 2010)
dr, >0Veo € X,,: (IFC) A (3V,) = (swDAE) asymptotically stable

Explicit formula for 7,

It is possible to explicitly calculate 7, in terms of minimum and maximum
eigenvalues of certain matrices involving P,, Qp.
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Conclusions
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Conclusions -

@ DAEs natural for modeling electrical circuits
@ Switches induce jumps and impulses = Distributional solutions

o General distributions not suitable
o Smaller space: Piecewise-smooth distributions

@ Regularity < Existence & uniqueness of solutions
@ Unique consistency jumps

e Condition for impulse-freeness

o Stability
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Matlab Code for calculating the consistency projectors [

Calculating a basis of the pre-image A~!(im S):

function V=getPrelImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if ml==m2 | m2==

H=null([A,S]);
V=colspace(H(1:nl1,:));

end;

Calculating V with im V = V-

function V = getVspace(E,A)
[m,nl=s%ze(E);
if (m==n) & size(E)==size(A)
V=eye(n,n);
oldsize=n; newsize=n; finished=0;
while finished==0;
EV=colspace(E*V);
V=getPreImage (A,EV);
oldsize=newsize;
newsize=rank(V);
finished = (newsize==oldsize);
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Appendix

Explicit formula for sufficient average dwell time L

Let P,, Q, be the solutions of the generalized Lyapunov equation
corresponding to (Ep, Ap), let O, be an orthogonal basis matrix of vV,

and let
)\max(OpTﬂ;EqTPqEqﬂqu) - N /\min(OJQpOp) 50
Hp,q ‘= ) = )
P-4 )\min(OpTEpTPpEpOp) P )\maX(OpTEpTPpEpOp)

where A\pin(+) and Ayax(+) denote the minimal and maximal eigenvalue of
a symmetric matrix, respectively. Then an average dwell time of

maXp,qIn p.q
min, A\p

guarantees asymptotic stability.
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