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Introduction
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Feedback loop

it = F(x,u)

y=H(z)

Switching
logic

I

Y

“Yref

Reference signal yef : R>9 — R absolutely continuous
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The funnel

Control objective

Error e := y — yref evolves within funnel

F=Floops)={ (1) | p-(t) Se < r(t) }

where ¢4 : R>¢ — R absolutely continuous

@ time-varying strict error
bound
vy (t) @ transient behaviour
t @ practical tracking
f/

T (le(®)] < A for t >> 0)
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The bang-bang funnel controller

Continuous Funnel Controller: Introduced by llchmann et al. in 2002

New approach
Achieve control objectives with e u(t) e {U_, Uy}

—Yref

|

Funnel
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Relative degree one case
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Relative degree one

Definition (Relative degree one)

@ Structural assumption
@ f,g,h can be unknown

o feasibility assumption (later) in terms of f, g, h and funnel

Important property
u(t) <<0 = g()<<0
ut) >>0 = gyt)>>0
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Relative degree one case
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Switching logic
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Relative degree one case
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Switching logic

e(t) < o+ (1)

Too simple?

= Feasibility assumptions
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Relative degree one case
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Feasibility assumptions

v="r(,2)+g9(y,z)u,  yoeR

z = h(y, 2), 20 € Zg CR™!
z:[0,t] = R""! solves 2 = h(y, z) for some
2" € Zy and for some y : [0,¢] — R

with o (7) < Y(7) — Yref(7) < 01 (7)
V1 € [0,¢]

Feasibility assumption

U_ <

Vit >0Vz € Z; :

U, >
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Relative degree one case
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Main result relative degree one

Theorem (Bang-bang funnel controller)
Relative degree one & Funnel & simple switching logic & Feasibility

=
Bang-bang funnel controller works:

@ existence and uniqueness of global solution
@ error remains within funnel for all time

@ no zeno behaviour

Necessary knowledge:
o for controller implementation:
o relative degree (one)
e signals: error e(t) and funnel boundaries - (t)
@ to check feasibility:

e bounds on zero dynamics
e bounds on f and g

o bounds on Yref and Yref

e bounds on the funnel
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Relative degree two case
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Relative degree two

Definition (Relative degree two)

0
¢=Fu) §=f9,2)+9.9,2)u

Important property
ut) << 0 = () <<0
ult) >>0 = §j(t) >>0
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Relative degree two case
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Feedback loop

Switching | e,

|ogic “Yref
Funnel
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Relative degree two case
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The switching logic

e(t)
\ decrease e
( ét) < o2 (1) )
AN o+ (1)
N —r ¢
= oS .
(1)
/ e(t) > o+ (t
A L E(t) > ¢+ (t) )
et decrease e increase e |decrease e e(t) < o (t) + ex e(t) > o4 (t) — 4
(" . ) )
e(t) > ¢4 (t)
Pt g (1)
— ,
Fi / —
(1)
e(t) < o (t
B () x W= y
increase e
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Relative degree two case
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Feasibility assumptions

Funnels F(p4,¢-), F (9%, )
Safety distances e*,e™ > 0

Feasibility of funnels

eVt>0: ep<py(t) and e_ <p_(1)
o Vt>0: ¢%(t)>¢_(t) and ¢%(t) < py(t)

y = f(y7y7z) + g(y,y,z)u
z=Nhy,7,z2)
Zy ={ z(t) | z solves z = h(y,y,2),2(0) € Zy }
Choose 04 > 0 such that
64 > max{¢? (t),¢_(t)} and
—6 < min{pd (1), g+ (1)} VE>0
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Relative degree two case
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Feasibility assumptions

Feasibility assumption 1

—0— + Yref(t) + £ (Yt, 1, 21)
9, Ues 2t)

Ot + Gret(t) + f (Yes Gt, 2t)
(s, Ve, 2t)

Vit 2 Ov Vyt S [yref(t) + @7(15)7 yref(t) + P+ (t”'
vyt € [yref(t) + (Pti (t)vyref(t> + (Pi (t)], VZt € Zt

Feasibility assumption 2

s (lp |l + || min{p, 0} )2
= 25

o (gl + [[max{e—, 0}[1)>
= 25,
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Relative degree two case
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Main result relative degree two

Theorem (Bang-bang funnel controller)

Relative degree two & Funnels & simple switching logic & Feasibility
=

Bang-bang funnel controller works:
@ existence and uniqueness of global solution
@ error and its derivative remain within funnels for all time

@ no zeno behaviour
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Simulations
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Model of exothermic chemical reactions

Model from [lichmann & T. 2004]:

Y = br(z1,22,y) — qy +u,

v(t)
21 = cr(z1, 22,y) + d(2 — 21), T e
Zo = CQ’I‘(zl7 ZQ,y) + d(zizn — ZQ), 2 25 3
b‘20,q>0,01<0,026R,d>0, 600
len/Q 20

r:R>g X R>g X R>g — R locally
Lipschitz with 7(0,0,y) =0 Vy > 0

Yref = Yy* >0

Feasibility assumptions from [IT 2004] imply feasibility for bang-bang
funnel controller if
o+ (1) € (0,7 —y],
(fg-‘r(t) > —p—,

(t) € (=y",0),

(Vo
Sb— (t) < P+,
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Conclusions

Conclusion 1E

Introduced new controller design: Bang-bang funnel controller

o Design only depends on relative degree
o extremely simple

Feasibility assumptions
e U4,U_ must be large enough
e in terms of bounds on systems dynamics
o higher perfomance = larger values for U, U_

Switching dwell times can be guaranteed

Higher relative degree (work in progress)

e Switching logic remains simple (hierarchically)
o Feasibility assumptions get more complicated
e Switching frequency increase significantly (exponentially?)
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