Switched differential algebraic equations: Jumps and impulses

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Seminar at LAMIH, University of Valenciennes, France, 20.09.2012

Contents

- Introduction
- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions
- Regularity of matrix pairs and solution formulas
 - Regularity and the quasi-Weierstrass form
 - Solution properties: the homogenous case
 - Solution properties: the inhomogenous case
- 4 Conclusions

Standard modeling of circuits

$$\frac{\mathrm{d}}{\mathrm{d}t}i_L = \frac{1}{L}u$$

General form: $\dot{x} = Ax + Bu$

$$\frac{d}{dt}i_L = -\frac{1}{L}u_C$$

$$\frac{d}{dt}u_C = \frac{1}{C}i_L$$

Switched ODE?

Introduction

000000

Mode 1:
$$\frac{d}{dt}i_L = \frac{1}{L}u$$

Mode 2:
$$\frac{d}{dt}i_L = -\frac{1}{L}u_C$$
$$\frac{d}{dt}u_C = \frac{1}{C}i_L$$

No switched ODE

Not possible to write as

$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

With $x := (i_L, u_L, i_C, u_C)$ write each mode as:

$$E_p \dot{x} = A_p x + B_p u$$

Algebraic equations $\Rightarrow E_p \text{ singular}$

Mode 1:
$$L\frac{d}{dt}i_L = u_L$$
, $C\frac{d}{dt}u_C = i_C$, $0 = u_L - u$, $0 = i_C$

$$\begin{bmatrix} L & 0 & 0 & 0 \\ 0 & 0 & 0 & C \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} u$$

Mode 2:
$$L \frac{d}{dt} i_L = u_L, C \frac{d}{dt} u_C = i_C, 0 = i_L - i_C, 0 = u_L + u_C$$

Introduction

000000

Switched DAEs

DAE = Differential algebraic equation

Switched DAE

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$
 (swDAE)

or short
$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

with

- switching signal $\sigma: \mathbb{R} \to \{1, 2, \dots, p\}$
 - piecewise constant
 - locally finitely many jumps
- modes $(E_1, A_1, B_1), \dots, (E_p, A_p, B_p)$
 - $E_p, A_p \in \mathbb{R}^{n \times n}, p = 1, \dots, p$
 - \bullet $B_p: \mathbb{R}^{n \times m}, p = 1, \ldots, p$
- input $u: \mathbb{R} \to \mathbb{R}^m$

Question

Existence and nature of solutions?

Impulse example

Introduction

000000

inductivity law:

$$L\frac{d}{dt}i_L=u_L$$

switch dependent: $0 = u_L - u$

$$0 = u_I - u$$

$$0=i_L$$

Impulse example

Introduction

000000

$$x = \begin{bmatrix} i_L, u_L \end{bmatrix}^{\top}$$

$$\begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u$$

$$x = \begin{bmatrix} i_L, u_L \end{bmatrix}^{\top}$$

$$\begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

Solution of example

$$L\frac{d}{dt}i_L = u_L, \qquad 0 = u_L - u \text{ or } 0 = i_L$$

Assume: u constant, $i_L(0) = 0$

switch at
$$t_s > 0$$
: $\sigma(t) = \begin{cases} 1, & t < t_s \\ 2, & t \ge t_s \end{cases}$

Contents

1

- 1 Introduction
- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions
- Regularity of matrix pairs and solution formulas
 - Regularity and the quasi-Weierstrass form
 - Solution properties: the homogenous case
 - Solution properties: the inhomogenous case
- 4 Conclusions

Distribution theorie - basic ideas

Distributions - overview

- Generalized functions
- Arbitrarily often differentiable
- ullet Dirac-Impulse δ_0 is "derivative" of Heaviside step function $\mathbb{1}_{[0,\infty)}$

Two different formal approaches

- Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
- Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Distributions - formal

Introduction

Definition (Test functions)

 $\mathcal{C}_0^{\infty} := \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi \text{ is smooth with compact support } \}$

Definition (Distributions)

 $\mathbb{D} := \{ D : \mathcal{C}_0^{\infty} \to \mathbb{R} \mid D \text{ is linear and continuous } \}$

Definition (Regular distributions)

 $f \in L_{1,loc}(\mathbb{R} \to \mathbb{R})$: $f_{\mathbb{D}} : \mathcal{C}_0^{\infty} \to \mathbb{R}, \ \varphi \mapsto \int_{\mathbb{R}} f(t)\varphi(t)dt \in \mathbb{D}$

Definition (Derivative)

 $D'(\varphi) := -D(\varphi')$

Dirac Impulse at $t_0 \in \mathbb{R}$

 $\delta_{t_0}: \mathcal{C}_0^{\infty} \to \mathbb{R}, \quad \varphi \mapsto \varphi(t_0)$

Multiplication with functions

Definition (Multiplication with smooth functions)

$$\alpha \in \mathcal{C}^{\infty}$$
: $(\alpha D)(\varphi) := D(\alpha \varphi)$

(swDAE)
$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, B_{\sigma} \notin \mathcal{C}^{\infty}$

Multiplication cannot be defined for general distributions!

Introduction

Switched DAFs

- Examples: distributional solutions
- Multiplication with non-smooth coefficients

Distributions

- Multiplication with non-smooth coefficients not possible
- Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions $\mathbb{D}_{pw\mathcal{C}^{\infty}}$)

$$\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} := \left\{ \begin{array}{l} f_{\mathbb{D}} + \sum_{t \in \mathcal{T}} D_t & f \in \mathcal{C}^{\infty}_{\mathsf{pw}}, \\ \mathcal{T} \subseteq \mathbb{R} \text{ locally finite}, \\ \forall t \in \mathcal{T} : D_t = \sum_{i=0}^{n_t} a_i^t \delta_t^{(i)} \end{array} \right\}$$

Properties of $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

Introduction

- $D \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} \Rightarrow D' \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$
- Multiplication with $\mathcal{C}_{pw}^{\infty}$ -functions well defined
- Left and right sided evaluation at $t \in \mathbb{R}$: D(t-), D(t+)
- Impulse at $t \in \mathbb{R}$: D[t]

(swDAE)
$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
 with input $u \in (\mathbb{D}_{pw\mathcal{C}^{\infty}})^m$

Application to (swDAE)

x solves (swDAE) : $\Leftrightarrow x \in (\mathbb{D}_{pwC^{\infty}})^n$ and (swDAE) holds in $\mathbb{D}_{pwC^{\infty}}$

Regularity & Solution formulas

Relevant questions

Consider $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ with regular matrix pairs (E_{p}, A_{p}) .

- Existence of solutions?
- Uniqueness of solutions?
- Inconsistent initial value problems?
- Jumps and impulses in solutions?
- Conditions for impulse free solutions?

Theorem (Existence and uniqueness, T. 2009)

$$\forall x^0 \in (\mathbb{D}_{pw\mathcal{C}^{\infty}})^n \ \forall t_0 \in \mathbb{R} \ \forall u \in (\mathbb{D}_{pw\mathcal{C}^{\infty}})^m \ \exists ! x \in (\mathbb{D}_{pw\mathcal{C}^{\infty}})^n :$$

$$x_{(-\infty,t_0)} = x^0_{(-\infty,t_0)} (E_{\sigma}\dot{x})_{[t_0,\infty)} = (A_{\sigma}x + B_{\sigma}u)_{[t_0,\infty)}$$

Contents

7

- 1 Introduction
- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions
- 3 Regularity of matrix pairs and solution formulas
 - Regularity and the quasi-Weierstrass form
 - Solution properties: the homogenous case
 - Solution properties: the inhomogenous case
- 4 Conclusions

Regularity: Definition and characterization

Definition (Regularity)

$$(E, A)$$
 regular $:\Leftrightarrow$ $\det(sE - A) \not\equiv 0$

Theorem (Characterizations of regularity)

The following statements are equivalent:

- (E, A) is regular.
- $\exists S, T \in \mathbb{R}^{n \times n}$ invertible which yield quasi-Weierstrass form

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \quad (QWF)$$

where N is a nilpotent matrix.

• \forall smooth $f \exists$ classical solution x of $E\dot{x} = Ax + f$ which is uniquely given by $x(t_0)$ for any $t_0 \in \mathbb{R}$.

Introduction

Wong sequences and the quasi-Weierstrass form

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \qquad (QWF)$$

Theorem (Armentano '86, Berger, Ilchmann, T. '12)

For regular (E, A) define the Wong sequences

$$\mathcal{V}^{i+1} := A^{-1}(E\mathcal{V}^i), \qquad \qquad \mathcal{V}^0 := \mathbb{R}^n, \ \mathcal{W}^{i+1} := E^{-1}(A\mathcal{W}^i), \qquad \qquad \mathcal{W}^0 := \{0\}.$$

Then $\mathcal{V}^i \overset{\text{finite}}{\to} \mathcal{V}^*$ and $\mathcal{W}^i \overset{\text{finite}}{\to} \mathcal{W}^*$. Choose V, W such that im $V = \mathcal{V}^*$ and im $W = \mathcal{W}^*$ than

$$T := [V, W], \quad S := [EV, AW]^{-1}$$

yield (QWF).

Matlab Code for calculating quasi-Weierstrass form

Calculating a basis of the pre-image $A^{-1}(\text{im }S)$:

```
function V=getPreImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
end;
```

Calculating V with im $V = \mathcal{V}^*$:

Calculating W with im $W = \mathcal{W}^*$ analogously.

Contents

- 1 Introduction
- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions
- Regularity of matrix pairs and solution formulas
 - Regularity and the quasi-Weierstrass form
 - Solution properties: the homogenous case
 - Solution properties: the inhomogenous case
- 4 Conclusions

Consistency projector

Introduction

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}$$
 (QWF)

Definition (Consistency projector)

Let (E, A) be regular with (QWF), consistency projector:

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

Theorem

x solves $E_{\sigma}\dot{x}=A_{\sigma}x$ \Rightarrow for all switching times $t\in\mathbb{R}$:

$$x(t+) = \prod_{(E_a,A_a)} x(t-), \quad q := \sigma(t+)$$

Differential projector

Introduction

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \quad (QWF)$$

Definition (Differential projector)

Let (E, A) be regular with (QWF), differential projector:

$$\Pi_{(E,A)}^{\mathsf{diff}} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S$$

$$A^{\text{diff}} := \prod_{(E,A)}^{\text{diff}} A$$

Theorem (Tanwani & T. 2010)

x solves $E_{\sigma}\dot{x}=A_{\sigma}x \Rightarrow$ for non-switching times $t \in \mathbb{R}$:

$$\dot{x}(t) = A_{\sigma(t)}^{\text{diff}} x(t)$$

Impulse projector

Introduction

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \quad (QWF)$$

Definition (Impulse projector)

Let (E, A) be regular with (QWF), impulse projector:

$$\Pi_{(E,A)}^{\mathsf{imp}} := T \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S$$

$$E^{\text{imp}} := \Pi^{\text{imp}}_{(E,A)} E$$

Theorem (Tanwani & T. 2009)

$$x ext{ solves } E_{\sigma}\dot{x} = A_{\sigma}x \quad \Rightarrow \quad \forall t \in \mathbb{R}:$$

$$x[t] = \sum_{i=0}^{n-2} (\textbf{\textit{E}}_{\sigma(t+)}^{imp})^{i+1} (x(t+) - x(t-)) \delta_t^{(i)}$$

Impulse freeness

Introduction

Consider $E_{\sigma}\dot{x} = A_{\sigma}x$

Theorem (Impulse freeness, T. 2009)

$$\forall p,q \in \{1,\ldots,p\}: \ \textit{\textbf{E}}_q\big(\Pi_{(\textit{\textbf{E}}_q,\textit{\textbf{A}}_q)}-\textit{\textbf{I}}\big)\Pi_{(\textit{\textbf{E}}_p,\textit{\textbf{A}}_p)}=0 \ \ \Rightarrow \ \ \textit{\textbf{x}}[t]=0 \ \forall t$$

Weaker than the usual index one (a.k.a. impulse-freeness) assumption.

Contents

/

- Introduction
- Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions
- Regularity of matrix pairs and solution formulas
 - Regularity and the quasi-Weierstrass form
 - Solution properties: the homogenous case
 - Solution properties: the inhomogenous case
- 4 Conclusions

Solution formula, inhomogeneous non-switched case

Consider $E\dot{x} = Ax + f$

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}$$
 (QWF)

$$\Pi_{(E,A)} := T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} T^{-1}, \qquad \Pi_{(E,A)}^{\text{diff}} := T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} S, \qquad \Pi_{(E,A)}^{\text{imp}} := T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} S,$$

$$A^{\text{diff}} := \Pi_{(E,A)}^{\text{diff}} A, \qquad E^{\text{imp}} := \Pi_{(E,A)}^{\text{imp}} E$$

Theorem (Explicit solution formula, non-switched, T. 2012)

$$x \text{ solves } E\dot{x} = Ax + f \Leftrightarrow \exists c \in \mathbb{R}^n \ \forall t \in \mathbb{R} :$$

$$x(t) = e^{A^{\text{diff}}t} \prod_{(\boldsymbol{E},\boldsymbol{A})} c + \int_0^t e^{A^{\text{diff}}(t-s)} \prod_{(\boldsymbol{E},\boldsymbol{A})}^{\text{diff}} f(s) \mathrm{d}s - \sum_{i=0}^{n-1} (E^{\text{imp}})^i \prod_{(\boldsymbol{E},\boldsymbol{A})}^{\text{imp}} f^{(i)}(t)$$

Jumps and impulses for switched DAE

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \tag{swDAE}$$

$$B_q^{\mathsf{imp}} := \Pi_{(E_q, A_q)}^{\mathsf{imp}} B_q, \quad q \in \{1, \dots, p\}, \ u[\cdot] = 0$$

Corollary (Jumps and impulses)

$$x \text{ solves } (\mathbf{swDAE}) \Rightarrow \forall t \in \mathbb{R} :$$

$$\mathbf{x}(t+) = \Pi_{(E_q, A_q)} \mathbf{x}(t-) - \sum_{i=0}^{n-1} (E_q^{imp})^i B_q^{imp} \mathbf{u}^{(i)}(t+),$$

$$\mathbf{x}[t] = -\sum_{i=0}^{n-1} (E_q^{imp})^{i+1} (I - \Pi_{(E_q, A_q)}) \mathbf{x}(t-) \, \delta_t^{(i)} \qquad q := \sigma(t+)$$

$$-\sum_{i=0}^{n-1} (E_q^{imp})^{i+1} \sum_{i=0}^{i} B_q^{imp} \mathbf{u}^{(i-j)}(t+) \, \delta_t^{(j)}$$

Regularity & Solution formulas

Introduction

- DAEs natural for modeling electrical circuits
- Switches induce jumps and impulses ⇒ Distributional solutions
 - General distributions not suitable
 - Smaller space: Piecewise-smooth distributions
- Regularity
 ⇔ Existence & uniqueness of solutions
- Unique consistency jumps
- Condition for impulse-freeness
- Explicit solution formulas