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Standard modeling of circuits
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General form: ẋ = Ax + Bu
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Switched ODE?
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Mode 1: d
dt iL = 1
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Mode 2: d
dt iL = − 1

L uC

d
dt uC = 1

C iL

No switched ODE

Not possible to write as ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) .
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Include algebraic equations in description
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+

u C uC

iC

L uL

iL With x := (iL, uL, iC , uC ) write each mode as:

Ep ẋ = Apx + Bpu

Algebraic equations ⇒ Ep singular

Mode 1: L d
dt iL = uL, C d

dt uC = iC , 0 = uL − u, 0 = iC
L 0 0 0
0 0 0 C
0 0 0 0
0 0 0 0

 ẋ =


0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0

 x +


0
0
−1
0

 u

Mode 2: L d
dt iL = uL, C d

dt uC = iC , 0 = iL − iC , 0 = uL + uC
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Switched DAEs

DAE = Differential algebraic equation

Switched DAE

Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) (swDAE)

or short Eσ ẋ = Aσx + Bσu

with
switching signal σ : R→ {1, 2, . . . , p}

piecewise constant
locally finitely many jumps

modes (E1,A1,B1), . . . , (Ep,Ap,Bp)
Ep,Ap ∈ Rn×n, p = 1, . . . , p
Bp : Rn×m, p = 1, . . . , p

input u : R→ Rm

Question

Existence and nature of solutions?
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Impulse example
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inductivity law: L d
dt iL = uL

switch dependent: 0 = uL − u

−
+

Lu uL

iL

0 = iL
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Impulse example
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L 0
0 0

]
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Solution of example

L d
dt iL = uL, 0 = uL − u or 0 = iL

Assume: u constant, iL(0) = 0

switch at ts > 0: σ(t) =

{
1, t < ts

2, t ≥ ts

t

uL(t)

ts
t

iL(t)

ts

u

δts
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Distribution theorie - basic ideas

Distributions - overview

Generalized functions

Arbitrarily often differentiable

Dirac-Impulse δ0 is “derivative” of Heaviside step function 1[0,∞)

Two different formal approaches

1 Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)

2 Axiomatic: Space of all “derivatives” of continuous functions
(J. Sebastião e Silva 1954)
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Distributions - formal

Definition (Test functions)

C∞0 := { ϕ : R→ R | ϕ is smooth with compact support }

Definition (Distributions)

D := { D : C∞0 → R | D is linear and continuous }

Definition (Regular distributions)

f ∈ L1,loc(R→ R): fD : C∞0 → R, ϕ 7→
∫
R f (t)ϕ(t)dt ∈ D

Definition (Derivative)

D ′(ϕ) := −D(ϕ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞0 → R, ϕ 7→ ϕ(t0)
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Multiplication with functions

Definition (Multiplication with smooth functions)

α ∈ C∞ : (αD)(ϕ) := D(αϕ)

(swDAE) Eσ ẋ = Aσx + Bσu

Coefficients not smooth

Problem: Eσ,Aσ,Bσ /∈ C∞

Multiplication cannot be defined for general distributions!
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Dilemma

Switched DAEs

Examples: distributional
solutions

Multiplication with non-smooth
coefficients

Distributions

Multiplication with non-smooth
coefficients not possible

Initial value problems cannot be
formulated

Underlying problem

Space of distributions too big.
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Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞)

DpwC∞ :=

 fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 at
i δ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

D ∈ DpwC∞ ⇒ D ′ ∈ DpwC∞

Multiplication with C∞pw-functions well defined

Left and right sided evaluation at t ∈ R: D(t−),D(t+)

Impulse at t ∈ R: D[t]

(swDAE) Eσ ẋ = Aσx + Bσu with input u ∈ (DpwC∞)m

Application to (swDAE)

x solves (swDAE) :⇔ x ∈ (DpwC∞)n and (swDAE) holds in DpwC∞
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Relevant questions

Consider Eσ ẋ = Aσx + Bσu with regular matrix pairs (Ep,Ap).

Existence of solutions?

Uniqueness of solutions?

Inconsistent initial value problems?

Jumps and impulses in solutions?

Conditions for impulse free solutions?

Theorem (Existence and uniqueness, T. 2009)

∀x0 ∈ (DpwC∞)n ∀t0 ∈ R ∀u ∈ (DpwC∞)m ∃!x ∈ (DpwC∞)n:

x(−∞,t0) = x0
(−∞,t0)

(Eσ ẋ)[t0,∞) = (Aσx + Bσu)[t0,∞)
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Regularity: Definition and characterization

Definition (Regularity)

(E ,A) regular :⇔ det(sE − A) 6≡ 0

Theorem (Characterizations of regularity)

The following statements are equivalent:

(E ,A) is regular.

∃S ,T ∈ Rn×n invertible which yield quasi-Weierstrass form

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

where N is a nilpotent matrix.

∀ smooth f ∃ classical solution x of E ẋ = Ax + f which is uniquely
given by x(t0) for any t0 ∈ R.
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Wong sequences and the quasi-Weierstrass form

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Theorem (Armentano ’86, Berger, Ilchmann, T. ’12)

For regular (E ,A) define the Wong sequences

V i+1 := A−1(EV i ), V0 := Rn,

W i+1 := E−1(AW i ), W0 := {0}.

Then V i finite→ V∗ and W i finite→ W∗. Choose V ,W such that im V = V∗
and im W =W∗ than

T := [V ,W ], S := [EV ,AW ]−1

yield ( QWF).
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Matlab Code for calculating quasi-Weierstrass form

Calculating a basis of the pre-image A−1(imS):

function V=getPreImage(A,S)
[m1 ,n1]= size(A); [m2,n2]= size(S);
if m1==m2

H=null ([A,S]);
V=colspace(H(1:n1 ,:));

end;

Calculating V with imV = V∗:

function V = getVspace(E,A)
[m,n]= size(E);
if (m==n) & [m,n]== size(A)

V=eye(n,n);
oldsize=n+1; newsize=n; finished =0;
while (newsize ~= oldsize );

EV=colspace(E*V);
V=getPreImage(A,EV);
oldsize=newsize; newsize=rank(V);

end;
end;

Calculating W with imW = W∗ analogously.
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Consistency projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(QWF)

Definition (Consistency projector)

Let (E ,A) be regular with (QWF), consistency projector:

Π(E ,A) := T

[
I 0
0 0

]
T−1

Theorem

x solves Eσ ẋ = Aσx ⇒ for all switching times t ∈ R :

x(t+) = Π(Eq,Aq)x(t−), q := σ(t+)
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Differential projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Definition (Differential projector)

Let (E ,A) be regular with (QWF), differential projector:

Πdiff
(E ,A) := T

[
I 0
0 0

]
S

Adiff := Πdiff
(E ,A)A

Theorem (Tanwani & T. 2010)

x solves Eσ ẋ = Aσx ⇒ for non-switching times t ∈ R :

ẋ(t) = Adiff
σ(t)x(t)
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Impulse projector

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (QWF)

Definition (Impulse projector)

Let (E ,A) be regular with (QWF), impulse projector:

Πimp
(E ,A) := T

[
0 0
0 I

]
S

E imp := Πimp
(E ,A)E

Theorem (Tanwani & T. 2009)

x solves Eσ ẋ = Aσx ⇒ ∀t ∈ R :

x [t] =
n−2∑
i=0

(E imp
σ(t+))

i+1(x(t+)− x(t−))δ
(i)
t
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Impulse freeness

Consider Eσ ẋ = Aσx

Theorem (Impulse freeness, T. 2009)

∀p, q ∈ {1, . . . , p} : Eq(Π(Eq,Aq) − I )Π(Ep,Ap) = 0 ⇒ x [t] = 0 ∀t

Weaker than the usual index one (a.k.a. impulse-freeness) assumption.
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Solution formula, inhomogeneous non-switched case

Consider E ẋ = Ax + f

(SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(QWF)

Π(E ,A) := T [ I 0
0 0 ] T−1, Πdiff

(E ,A) := T [ I 0
0 0 ] S , Πimp

(E ,A) := T [ 0 0
0 I ] S ,

Adiff := Πdiff
(E ,A)A, E imp := Πimp

(E ,A)E

Theorem (Explicit solution formula, non-switched, T. 2012)

x solves E ẋ = Ax + f ⇔ ∃c ∈ Rn ∀t ∈ R :

x(t) = eAdifftΠ(E ,A)c +

∫ t

0

eAdiff(t−s)Πdiff
(E ,A)f (s)ds−

n−1∑
i=0

(E imp)i Πimp
(E ,A)f

(i)(t)

Stephan Trenn Technomathematics group, University of Kaiserslautern, Germany

Switched differential algebraic equations:Jumps and impulses



Introduction Distributions as solutions Regularity & Solution formulas Conclusions

Jumps and impulses for switched DAE

Eσ ẋ = Aσx + Bσu (swDAE)

B imp
q := Πimp

(Eq,Aq)Bq, q ∈ {1, . . . , p}, u[·] = 0

Corollary (Jumps and impulses)

x solves ( swDAE) ⇒ ∀t ∈ R :

x(t+) = Π(Eq,Aq)x(t−)−
n−1∑
i=0

(E imp
q )i B imp

q u(i)(t+),

x [t] = −
n−1∑
i=0

(E imp
q )i+1(I − Π(Eq,Aq))x(t−) δ

(i)
t q := σ(t+)

−
n−1∑
i=0

(E imp
q )i+1

i∑
j=0

B imp
q u(i−j)(t+) δ

(j)
t
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Conclusions

DAEs natural for modeling electrical circuits

Switches induce jumps and impulses ⇒ Distributional solutions

General distributions not suitable
Smaller space: Piecewise-smooth distributions

Regularity ⇔ Existence & uniqueness of solutions

Unique consistency jumps

Condition for impulse-freeness

Explicit solution formulas
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