Switched differential algebraic equations: Jumps and impulses

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Seminar at LAMIH, University of Valenciennes, France, 20.09.2012

Regularity & Solution formulas

Contents

Introduction

2 Distributions as solutions

- Review: classical distribution theory
- Piecewise smooth distributions

8 Regularity of matrix pairs and solution formulas

- Regularity and the quasi-Weierstrass form
- Solution properties: the homogenous case
- Solution properties: the inhomogenous case

4 Conclusions

Introduction •00000	Distributions as solutions	solutions Regularity & Solution formulas	
Standard	modeling of circuits		1
	iL	, iı	

u_C

 $\frac{\mathrm{d}}{\mathrm{d}t}i_L = \frac{1}{L}u$

и

 $\frac{\mathrm{d}}{\mathrm{d}t}i_L = -\frac{1}{L}u_C$

 $\frac{\mathrm{d}}{\mathrm{d}t}u_{\mathrm{C}} = \frac{1}{\mathrm{C}}i_{\mathrm{L}}$

ions

L

Distributions as solutions

Regularity & Solution formulas

Switched ODE?

Mode 1: $\frac{d}{dt}i_L = \frac{1}{L}u$ Mode 2: $\frac{d}{dt}i_L = -\frac{1}{L}u_C$ $\frac{d}{dt}u_C = \frac{1}{L}i_L$

No switched ODE

Not possible to write as

$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Distributions as solutions

Regularity & Solution formulas

Include algebraic equations in description

With $x := (i_L, u_L, i_C, u_C)$ write each mode as:

$$E_p \dot{x} = A_p x + B_p u$$

Algebraic equations $\Rightarrow E_p$ singular

Mode 1:
$$L\frac{d}{dt}i_L = u_L, C\frac{d}{dt}u_C = i_C, 0 = u_L - u, 0 = i_C$$

$$\begin{bmatrix} L & 0 & 0 & 0 \\ 0 & 0 & 0 & C \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} u$$
Mode 2: $L\frac{d}{dt}i_L = u_L, C\frac{d}{dt}u_C = i_C, 0 = i_L - i_C, 0 = u_L + u_C$

Stephan Trenn

OCO OCO	OCOCOCO	Regularity & Solution formulas	O
Switched [DAEs		Î

DAE = Differential algebraic equation

Switched DAE

 $E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$

(swDAE)

or short $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$

with

- switching signal $\sigma : \mathbb{R} \to \{1, 2, \dots, p\}$
 - piecewise constant
 - locally finitely many jumps

• modes
$$(E_1, A_1, B_1), \dots, (E_p, A_p, B_p)$$

•
$$E_p, A_p \in \mathbb{R}^{n \times n}, \ p = 1, \dots, p$$

•
$$B_p: \mathbb{R}^{n imes m}, \ p = 1, \dots, p$$

• input
$$u: \mathbb{R} \to \mathbb{R}^m$$

Question

Existence and nature of solutions?

Stephan Trenn

 $L\frac{d}{dt}i_L = u_L$

Stephan Trenn

 $0 = i_{L}$

Switched differential algebraic equations: Jumps and impulses

switch dependent: $0 = u_L - u_L$

inductivity law:

Introductio	on
000000	

Regularity & Solution formulas

Impulse example

Stephan Trenn

Introd	uct	ion
000	oc	•

Regularity & Solution formulas

Conclusions

Solution of example

$$L \frac{\mathrm{d}}{\mathrm{d}t} i_L = u_L, \qquad 0 = u_L - u \text{ or } 0 = i_L$$

Assume:
$$u$$
 constant, $i_L(0) = 0$
switch at $t_s > 0$: $\sigma(t) = \begin{cases} 1, & t < t_s \\ 2, & t \ge t_s \end{cases}$

Stephan Trenn

Regularity & Solution formulas

Contents

Introduction

2 Distributions as solutions

- Review: classical distribution theory
- Piecewise smooth distributions

8 Regularity of matrix pairs and solution formulas

- Regularity and the quasi-Weierstrass form
- Solution properties: the homogenous case
- Solution properties: the inhomogenous case

4 Conclusions

Distributions as solutions

Regularity & Solution formulas

Î

Distribution theorie - basic ideas

Distributions - overview

- Generalized functions
- Arbitrarily often differentiable
- Dirac-Impulse δ_0 is "derivative" of Heaviside step function $\mathbb{1}_{[0,\infty)}$

Two different formal approaches

- Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
- Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Stephan Trenn

Introd	luction
0000	000

Regularity & Solution formulas

Distributions - formal

Definition (Test functions)

 $\mathcal{C}_0^{\infty} := \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi \text{ is smooth with compact support } \}$

Definition (Distributions)

 $\mathbb{D} := \{ D : \mathcal{C}_0^{\infty} \to \mathbb{R} \mid D \text{ is linear and continuous } \}$

Definition (Regular distributions)

 $f \in L_{1, \mathsf{loc}}(\mathbb{R} \to \mathbb{R})$: $f_{\mathbb{D}} : \mathcal{C}_0^{\infty} \to \mathbb{R}, \ \varphi \mapsto \int_{\mathbb{R}} f(t) \varphi(t) \mathsf{d}t \in \mathbb{D}$

Definition (Derivative)

 $D'(\varphi) := -D(\varphi')$

Dirac Impulse at $t_0 \in \mathbb{R}$

$$\delta_{t_0}: \mathcal{C}_0^\infty \to \mathbb{R}, \quad \varphi \mapsto \varphi(t_0)$$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Distributions as solutions

Regularity & Solution formulas

Multiplication with functions

Definition (Multiplication with smooth functions)

 $\alpha \in \mathcal{C}^{\infty}$: $(\alpha D)(\varphi) := D(\alpha \varphi)$

(swDAE)
$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, B_{\sigma} \notin C^{\infty}$

Multiplication cannot be defined for general distributions!

Stephan Trenn

Regularity & Solution formulas

Dilemma

Switched DAEs

- Examples: distributional solutions
- Multiplication with non-smooth coefficients

Distributions

- Multiplication with non-smooth coefficients not possible
- Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Stephan Trenn

Distributions as solutions

Regularity & Solution formulas

Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions $\mathbb{D}_{pwC^{\infty}}$)

$$\mathbb{D}_{pw\mathcal{C}^{\infty}} := \left\{ \begin{array}{c} f_{\mathbb{D}} + \sum_{t \in \mathcal{T}} D_t \\ f_{\mathbb{D}} = \sum_{t \in \mathcal{T}} D_t \end{array} \middle| \begin{array}{c} f \in \mathcal{C}_{pw}^{\infty}, \\ \mathcal{T} \subseteq \mathbb{R} \text{ locally finite}, \\ \forall t \in \mathcal{T} : D_t = \sum_{i=0}^{n_t} a_i^t \delta_t^{(i)} \end{array} \right\}$$

Stephan Trenn

Distributions as solutions

Properties of $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

- $D \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} \Rightarrow D' \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$
- Multiplication with $\mathcal{C}^{\infty}_{pw}$ -functions well defined
- Left and right sided evaluation at $t \in \mathbb{R}$: D(t-), D(t+)
- Impulse at $t \in \mathbb{R}$: D[t]

(swDAE)
$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
 with input $u \in (\mathbb{D}_{pw\mathcal{C}^{\infty}})^m$

Application to (swDAE)

 $x ext{ solves (swDAE)} \quad :\Leftrightarrow \quad x \in (\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}})^n ext{ and (swDAE) holds in } \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

Stephan Trenn

Introduction	Distributions as solutions ○○○○○○●	Regularity & Solution formulas	Conclusions
Relevant	questions		Î

Consider $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ with regular matrix pairs (E_{ρ}, A_{ρ}) .

- Existence of solutions?
- Uniqueness of solutions?
- Inconsistent initial value problems?
- Jumps and impulses in solutions?
- Conditions for impulse free solutions?

Theorem (Existence and uniqueness, T. 2009)

 $\forall x^{0} \in (\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}})^{n} \; \forall t_{0} \in \mathbb{R} \; \forall u \in (\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}})^{m} \; \exists ! x \in (\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}})^{n} :$

$$\begin{aligned} x_{(-\infty,t_0)} &= x^0_{(-\infty,t_0)} \\ (E_{\sigma}\dot{x})_{[t_0,\infty)} &= (A_{\sigma}x + B_{\sigma}u)_{[t_0,\infty)} \end{aligned}$$

Stephan Trenn

Regularity & Solution formulas

Contents

Introduction

- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions

8 Regularity of matrix pairs and solution formulas

- Regularity and the quasi-Weierstrass form
- Solution properties: the homogenous case
- Solution properties: the inhomogenous case

4 Conclusions

Definition (Regularity)

(E, A) regular $\Rightarrow \det(sE - A) \neq 0$

Theorem (Characterizations of regularity)

The following statements are equivalent:

- (E, A) is regular.
- $\exists S, T \in \mathbb{R}^{n \times n}$ invertible which yield quasi-Weierstrass form

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right),$$
 (QWF)

where N is a nilpotent matrix.

• \forall smooth $f \exists$ classical solution x of $E\dot{x} = Ax + f$ which is uniquely given by $x(t_0)$ for any $t_0 \in \mathbb{R}$.

Distributions as solutions

Regularity & Solution formulas

Wong sequences and the quasi-Weierstrass form

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \qquad (QWF)$$

Theorem (Armentano '86, Berger, Ilchmann, T. '12)

For regular (E, A) define the Wong sequences

$$\begin{aligned} \mathcal{V}^{i+1} &:= A^{-1}(E\mathcal{V}^i), & \mathcal{V}^0 &:= \mathbb{R}^n, \\ \mathcal{W}^{i+1} &:= E^{-1}(A\mathcal{W}^i), & \mathcal{W}^0 &:= \{0\}. \end{aligned}$$

Then $\mathcal{V}^i \xrightarrow{\text{finite}} \mathcal{V}^*$ and $\mathcal{W}^i \xrightarrow{\text{finite}} \mathcal{W}^*$. Choose V, W such that im $V = \mathcal{V}^*$ and im $W = \mathcal{W}^*$ than

$$T := [V, W], \quad S := [EV, AW]^{-1}$$

yield (QWF).

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Calculating a basis of the pre-image $A^{-1}(\text{im } S)$:

```
function V=getPreImage(A,S)
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
end;
```

Calculating V with im $V = V^*$:

```
function V = getVspace(E,A)
[m,n]=size(E);
if (m==n) & [m,n]==size(A)
    V=eye(n,n);
    oldsize=n+1; newsize=n; finished=0;
    while (newsize~=oldsize);
        EV=colspace(E*V);
        V=getPreImage(A,EV);
        oldsize=newsize; newsize=rank(V);
    end;
end;
```

Calculating W with im $W = W^*$ analogously.

Regularity & Solution formulas

Contents

Introduction

- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions

8 Regularity of matrix pairs and solution formulas

- Regularity and the quasi-Weierstrass form
- Solution properties: the homogenous case
- Solution properties: the inhomogenous case

4 Conclusions

Distributions as solutions

Regularity & Solution formulas

Consistency projector

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$
(QWF)

Definition (Consistency projector)

Let (E, A) be regular with **(QWF)**, consistency projector:

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

Theorem

x solves $E_{\sigma}\dot{x} = A_{\sigma}x \Rightarrow$ for all switching times $t \in \mathbb{R}$:

$$x(t+) = \prod_{(E_q, A_q)} x(t-), \quad q := \sigma(t+)$$

Stephan Trenn

Distributions as solutions

Regularity & Solution formulas

Differential projector

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \qquad (QWF)$$

Definition (Differential projector)

Let (E, A) be regular with **(QWF)**, differential projector:

$$\Pi^{\mathrm{diff}}_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S$$

 $A^{\mathrm{diff}} := \Pi^{\mathrm{diff}}_{(E,A)} A$

Theorem (Tanwani & T. 2010)

x solves $E_{\sigma}\dot{x} = A_{\sigma}x \Rightarrow$ for non-switching times $t \in \mathbb{R}$:

$$\dot{x}(t) = A_{\sigma(t)}^{\mathsf{diff}} x(t)$$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Distributions as solutions

Regularity & Solution formulas

Impulse projector

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \qquad (QWF)$$

Definition (Impulse projector)

Let (E, A) be regular with **(QWF)**, impulse projector:

$$\Pi_{(E,A)}^{\rm imp} := T \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S$$

 $E^{\operatorname{imp}} := \prod_{(E,A)}^{\operatorname{imp}} E$

Theorem (Tanwani & T. 2009)

x solves
$$E_{\sigma}\dot{x} = A_{\sigma}x \implies \forall t \in \mathbb{R}$$
:

$$x[t] = \sum_{i=0}^{n-2} (E_{\sigma(t+)}^{imp})^{i+1} (x(t+) - x(t-)) \delta_t^{(i)}$$

Stephan Trenn

Intr	od		tio	n
00	00	00		

Regularity & Solution formulas

Impulse freeness

Consider $E_{\sigma}\dot{x} = A_{\sigma}x$

Theorem (Impulse freeness, T. 2009)

 $\forall p,q \in \{1,\ldots,p\}: \ E_q(\prod_{(E_q,A_q)}-I)\prod_{(E_p,A_p)}=0 \ \Rightarrow \ x[t]=0 \ \forall t$

Weaker than the usual index one (a.k.a. impulse-freeness) assumption.

Stephan Trenn

Regularity & Solution formulas

Contents

Introduction

- 2 Distributions as solutions
 - Review: classical distribution theory
 - Piecewise smooth distributions

8 Regularity of matrix pairs and solution formulas

- Regularity and the quasi-Weierstrass form
- Solution properties: the homogenous case
- Solution properties: the inhomogenous case

4 Conclusions

Consider $E\dot{x} = Ax + f$

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$
(QWF)

$$\begin{split} \Pi_{(E,A)} &:= \mathcal{T} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \mathcal{T}^{-1}, \qquad \Pi_{(E,A)}^{\text{diff}} &:= \mathcal{T} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S, \qquad \Pi_{(E,A)}^{\text{imp}} &:= \mathcal{T} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S, \\ \mathcal{A}^{\text{diff}} &:= \Pi_{(E,A)}^{\text{diff}} \mathcal{A}, \qquad \mathcal{E}^{\text{imp}} &:= \Pi_{(E,A)}^{\text{imp}} \mathcal{E} \end{aligned}$$

Theorem (Explicit solution formula, non-switched, T. 2012)

x solves $E\dot{x} = Ax + f \iff \exists c \in \mathbb{R}^n \ \forall t \in \mathbb{R}$:

$$x(t) = e^{A^{\text{diff}}t} \Pi_{(\boldsymbol{E},\boldsymbol{A})} c + \int_0^t e^{A^{\text{diff}}(t-s)} \Pi_{(\boldsymbol{E},\boldsymbol{A})}^{\text{diff}} f(s) \mathrm{d}s - \sum_{i=0}^{n-1} (\boldsymbol{E}^{\text{imp}})^i \Pi_{(\boldsymbol{E},\boldsymbol{A})}^{\text{imp}} f^{(i)}(t)$$

Stephan Trenn

Distributions as solutions

Regularity & Solution formulas

Jumps and impulses for switched DAE

$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \qquad (swDAE)$

 $B^{\mathrm{imp}}_q := \Pi^{\mathrm{imp}}_{(E_q,A_q)} B_q, \quad q \in \{1,\ldots,\mathrm{p}\}, \; u[\cdot] = 0$

Corollary (Jumps and impulses)

 $x \text{ solves } (\mathsf{swDAE}) \Rightarrow \forall t \in \mathbb{R}:$

$$\begin{aligned} \mathbf{x}(t+) &= \Pi_{(E_q,A_q)} \mathbf{x}(t-) - \sum_{i=0}^{n-1} (E_q^{imp})^i B_q^{imp} u^{(i)}(t+), \\ \mathbf{x}[t] &= -\sum_{i=0}^{n-1} (E_q^{imp})^{i+1} (I - \Pi_{(E_q,A_q)}) \mathbf{x}(t-) \, \delta_t^{(i)} \qquad q := \sigma(t+) \\ &- \sum_{i=0}^{n-1} (E_q^{imp})^{i+1} \sum_{j=0}^{i} B_q^{imp} u^{(i-j)}(t+) \, \delta_t^{(j)} \end{aligned}$$

Stephan Trenn

Distributions as solutions

Î:

Conclusions

- DAEs natural for modeling electrical circuits
- Switches induce jumps and impulses \Rightarrow Distributional solutions
 - General distributions not suitable
 - Smaller space: Piecewise-smooth distributions
- Regularity \Leftrightarrow Existence & uniqueness of solutions
- Unique consistency jumps
- Condition for impulse-freeness
- Explicit solution formulas

Stephan Trenn