Averaging for switched DAEs

Stephan Trenn
C. Pedicini, F. Vasca, L. lannelli (Università del Sannio, Benevento)

Technomathematics group, University of Kaiserslautern, Germany

84th Annual Meeting of the GAMM 2013, Novi Sad 21.03.2013, Session S20.3, 14:50
$\square \begin{gathered}\text { TECHISCHE UnIVERSITÄT } \\ \text { KAISERSLAUTERN }\end{gathered}$

Contents

(1) What is "Averaging"?
(2) Switched DAEs
(3) Avaraging result for switched DAEs
(4) Summary

Averaging: Basic idea

Application

- Fast switches occurs at
- Pulse width modulation
- ,,Sliding mode"-control
- In general: fast digital controller
- Simplified analyses
- Stability for sufficiently fast switching
- In general: desired behavior (approximate) via suitable switching

Simple example

Example

$$
\dot{x}=A_{\sigma} x, \quad A_{1}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right], \quad \sigma: \mathbb{R} \rightarrow\{1,2\} \text { periodic }
$$

\longrightarrow
∞

Fixed duty cycle for varying switching frequency (here $45: 5555: 45$)

Simple example

Example

$$
\dot{x}=A_{\sigma} x, \quad A_{1}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right], \quad \sigma: \mathbb{R} \rightarrow\{1,2\} \text { periodic }
$$

switching frequency

Fixed duty cycle for varying switching frequency (here $45: 5555: 45$)

Averaging result for switched linear ODEs

Consider switched linear ODE

$$
\dot{x}(t)=A_{\sigma(t)} x(t), \quad x(0)=x_{0}
$$

with periodic $\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, M\}$ and period $p>0$ and let $d_{1}, d_{2}, \ldots, d_{M} \geq 0$ with $d_{1}+d_{2}+\ldots+d_{M}=1$ be the duty cycles of the switched system.

Theorem (Brockett \& Wood 1974)

Let the averaged system be given by

$$
\dot{x}_{\mathrm{av}}=A_{\mathrm{av}} x_{\mathrm{av}}, \quad x_{\mathrm{av}}(0)=x_{0}
$$

and

$$
A_{\mathrm{av}}:=d_{1} A_{1}+d_{2} A_{2}+\ldots+d_{M} A_{M} .
$$

Then on every compact time interval:

$$
\left\|x(t)-x_{\mathrm{av}}(t)\right\|=O(p)
$$

Switched DAEs

Modeling of electrical circuits with switches yields

Switched differential-algebraic equations (DAEs)

$$
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t)
$$

Question

Does a similar result also hold for switched DAEs?

A counterexample

Consider $E_{\sigma} \dot{x}=A_{\sigma} \times$ with
$\left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right]\right), \quad\left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$

slow switching

fast switching

System class

$$
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t)
$$

Assumptions

- $\sigma:[0, \infty) \rightarrow\{1,2, \ldots, M\}$ periodic with periode $p>0$
- W.l.o.g.: σ monotonically increasing on $[0, p)$ and $d_{k} \in(0,1)$ is duty cycle for mode $k \in\{1,2, \ldots, M\}$
- matrix pairs $\left(E_{k}, A_{k}\right), k \in\{1,2, \ldots, M\}$, regular, i.e. $\operatorname{det}\left(s E_{k}-A_{k}\right) \not \equiv 0$

Non-switched DAEs: Properties

Theorem (Quasi-Weierstrass-form, WeIERSTRASS 1868)

(E, A) regular $\Leftrightarrow \exists T, S$ invertible:

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right), \quad N \text { nilpotent }
$$

Definition (Consistency projector)

$$
\Pi_{(E, A)}:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Definition (Differential projector and $A^{\text {diff }}$)

$$
\Pi_{(E, A)}^{\text {diff }}:=T\left[\begin{array}{ll}
l & 0 \\
0 & 0
\end{array}\right] S, \quad A^{\text {diff }}:=\Pi_{(E, A)}^{\text {diff }} A
$$

Solution characterization of DAEs

Theorem (Solution characterization, TANWANI \& T. 2010)

Consider DAE $E \dot{x}=A x$ with regular matrix pair (E, A) and corresponding consistency projector $\Pi_{(E, A)}$ and $A^{\text {diff }}$
\Rightarrow

$$
x(t)=e^{A^{\text {difif }}\left(t-t_{0}\right)} \Pi_{(E, A)} x\left(t_{0}-\right) \in \mathfrak{C} \quad t \in\left(t_{0}, \infty\right) .
$$

Remark: At t_{0} the presence of Dirac-impulses is possible!

Solution behavior for switched DAEs

$$
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t)
$$

with consistency projectors Π_{k} and $A_{k}^{\text {diff }}$

Theorem (Impulse freeness, T. 2009)

All solutions of (swDAE) are impulse free, if

$$
\begin{equation*}
\forall k \in\{1,2, \ldots, M\}: \quad E_{k}\left(I-\Pi_{k}\right) \Pi_{k-1}=0 \tag{IFC}
\end{equation*}
$$

where $\Pi_{-1}:=\Pi_{M}$.

Corollary

All solutions of (swDAE) satisfying (IFC) are given by

$$
x(t)=e^{A_{k}^{\text {diff }}\left(t-t_{i}\right)} \Pi_{i} e^{A_{i-1}^{\text {diff }}\left(t_{i}-t_{i-1}\right)} \Pi_{i-1} \cdots e^{A_{2}^{\text {diff }}\left(t_{3}-t_{2}\right)} \Pi_{2} e^{A_{1}^{d i f f}\left(t_{2}-t_{1}\right)} \Pi_{1} x\left(t_{1}-\right)
$$

Inhalt

(1) What is "Averaging"?
(2) Switched DAEs
(3) Avaraging result for switched DAEs
(4) Summary

Condition on consistency projectors

Assumption: commutative projectors

$$
\begin{equation*}
\forall i, j \in\{1, \ldots, M\}: \quad \Pi_{i} \Pi_{j}=\Pi_{j} \Pi_{i} \tag{C}
\end{equation*}
$$

Lemma

(C) $\Rightarrow \operatorname{im} \Pi_{1} \Pi_{2} \cdots \Pi_{M}=\operatorname{im} \Pi_{1} \cap \operatorname{im} \Pi_{2} \cap \ldots \cap \operatorname{im} \Pi_{M}$

Remark: $\operatorname{im} \Pi_{1} \cap \ldots \cap \operatorname{im} \Pi_{M}=\mathfrak{C}_{1} \cap \ldots \cap \mathfrak{C}_{M}$ and obviously the averaged system, if it exists, can only have solutions within the intersection of the consistency spaces, hence the projector

$$
\Pi_{\cap}:=\Pi_{1} \Pi_{2} \cdots \Pi_{M}
$$

plays a crucial role!
In the example it was: $\Pi_{1} \Pi_{2}=\Pi_{1} \neq \Pi_{2}=\Pi_{2} \Pi_{1}$

Main result

$$
\begin{gather*}
E_{\sigma(t)} \dot{x}(t)=A_{\sigma(t)} x(t) \\
\forall i, j \in\{1, \ldots, M\}: \quad \Pi_{i} \Pi_{j}=\Pi_{j} \Pi_{i} \tag{C}
\end{gather*}
$$

Theorem (Averaging for switched DAEs)

Consider impulse free (swDAE) with consistency projectors Π_{1}, \ldots, Π_{M} satisfying (C) and $A_{1}^{\text {diff }}, \ldots, A_{M}^{\text {diff }}$. The averaged system is

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap} x_{\mathrm{av}}, \quad x_{\mathrm{av}}(0)=\Pi_{\cap} \times(0-)
$$

where $\Pi_{\cap}=\Pi_{1} \Pi_{2} \cdots \Pi_{M}$ and

$$
A_{\mathrm{av}}^{\text {diff }}:=d_{1} A_{1}^{\text {diff }}+d_{2} A_{2}^{\text {diff }}+\ldots+d_{M} A_{M}^{\text {diff }} .
$$

Then $\forall t \in(0, T]$

$$
\left\|x(t)-x_{\mathrm{av}}(t)\right\|=O(p)
$$

Example

\Rightarrow switched DAE $E_{\sigma} \dot{x}=A_{\sigma} \times$ with $x=\left(v_{C_{1}}, v_{C_{2}}, i_{R}\right)^{\top}$ given by

$$
\begin{aligned}
& \left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
C_{1} & 0 & 0 \\
0 & C_{2} & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & -1 & -R \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\right) \\
& \left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
C_{1} & C_{2} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & -R \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(E_{1}, A_{1}\right)=\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
C_{1} & 0 & 0 \\
0 & C_{2}
\end{array}\right],\left[\begin{array}{cccc}
0 & -1 & -R \\
0 & 0 & 0 \\
0 & -1
\end{array}\right]\right) \\
& \left(E_{2}, A_{2}\right)=\left(\left[\begin{array}{cccc}
C_{1} & C_{0} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & -R \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\right)
\end{aligned}
$$

\Rightarrow consistency projectors

$$
\Pi_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{R} & 0
\end{array}\right], \quad \Pi_{2}=\frac{1}{C_{1}+C_{2}}\left[\begin{array}{lll}
C_{1} & C_{2} & 0 \\
C_{1} & C_{2} & 0 \\
\frac{C_{1}}{R} & \frac{C_{2}}{R} & 0
\end{array}\right] .
$$

and (C) holds:

$$
\Pi_{1} \Pi_{2}=\Pi_{2}=\Pi_{2} \Pi_{1}
$$

Simulation results

$$
d_{1}=0.4, \quad p=0.1
$$

$$
d_{1}=0.4, \quad p=0.02
$$

Summary

- Generalization of classical averaging result to switched DAEs
- averaged system does not exist in all cases
- Additional condition for consistency projectors necessary
- classical averaged matrix must be projected to the right space
- Open questions
- Commutativity of consistency projectors necessary?
- Impulses: Convergence in the sense of distributions?

