On averaging for switched linear differential algebraic equations

Stephan Trenn C. Pedicini, F. Vasca, L. Iannelli (Università del Sannio, Benevento)

Technomathematics group, University of Kaiserslautern, Germany

12th European Control Conference (ECC'13) Thursday, 18.07.2013, ThB5.3, 14:20

Avaraging result for switched DAEs

Contents

- 1 What is "Averaging"?
- 2 Switched DAEs
- 3 Avaraging result for switched DAEs
- Summary

Averaging: Basic idea

What is "Averaging"?

000

switched system

fast switching

non-switched average system

Application

- Fast switches occurs at
 - Pulse width modulation
 - "Sliding mode"-control
 - In general: fast digital controller
- Simplified analyses
 - Stability for sufficiently fast switching
 - In general: desired (approximate) behavior via suitable switching

Simple example

Example

$$\dot{x}=A_{\sigma}x,\quad A_1=egin{bmatrix} -2 & 0 \ 0 & 1 \end{bmatrix},\ A_2=egin{bmatrix} 1 & 0 \ 0 & -2 \end{bmatrix},\quad \sigma:\mathbb{R} o\{1,2\} \ ext{periodic}$$

switching frequency

Fixed duty cycle for varying switching frequency (here 45:5555:45)

Simple example

Example

000

$$\dot{x}=A_{\sigma}x,\quad A_1=egin{bmatrix} -2 & 0 \ 0 & 1 \end{bmatrix},\ A_2=egin{bmatrix} 1 & 0 \ 0 & -2 \end{bmatrix},\quad \sigma:\mathbb{R} o \{1,2\} \ ext{periodic}$$

Fixed duty cycle for varying switching frequency (here 45: 5555: 45)

 ∞

Averaging result for switched linear ODEs

Switched linear ODF

$$\dot{x}(t) = A_{\sigma(t)}x(t), \quad x(0) = x_0$$

where $\sigma: \mathbb{R} \to \{1,2\}$ is periodic with periode p > 0 and duty cycle d > 0

Theorem (Brockett & Wood 1974)

Let the average system be given by

$$\dot{x}_{\mathsf{av}} = A_{\mathsf{av}} x_{\mathsf{av}}, \quad x_{\mathsf{av}}(0) = x_0$$

and

000

$$A_{\mathsf{av}} := dA_1 + (1-d)A_2.$$

Then on every compact time interval:

$$||x(t) - x_{av}(t)|| = O(p).$$

Switched DAEs

Modeling of electrical circuits with switches yields

Switched differential-algebraic equations (DAEs)

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$$
 (swDAE)

Question

Does a similar result also hold for switched DAEs?

A counterexample

Consider $E_{\sigma}\dot{x} = A_{\sigma}x$ with

$$(E_1,A_1)=\left(\begin{bmatrix}0&0\\0&1\end{bmatrix},\begin{bmatrix}1&-1\\0&-1\end{bmatrix}\right),\quad (E_2,A_2)=\left(\begin{bmatrix}0&0\\0&1\end{bmatrix},\begin{bmatrix}1&0\\0&-1\end{bmatrix}\right)$$

no switching

slow switching

fast switching

System class

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$$
 (swDAE)

Assumptions

- $\sigma: [0,\infty) \to \{1,2\}$ periodic with periode p>0
- $d \in (0,1)$ is duty cycle for mode 1
- matrix pairs (E_k, A_k) , $k \in \{1, 2\}$, regular, i.e. $\det(sE_k A_k) \not\equiv 0$

Theorem (Quasi-Weierstrass-form, Weierstrass 1868)

(E,A) regular $\Leftrightarrow \exists T,S$ invertible:

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, N \text{ nilpotent}$$

Note: S and T can easily be calculated via the Wong sequences

Non-switched DAEs: Properties

$$(SET, SAT) = (\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix}), N \text{ nilpotent}$$

Definition (Consistency projector)

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

What is "Averaging"?

Solution characterization of DAEs

$$(SET, SAT) = (\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix}), N \text{ nilpotent}$$

Definition (Flow matrix A^{diff})

$$A^{\mathsf{diff}} := \mathcal{T} \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \mathcal{T}^{-1}$$

Theorem (Solution characterization, TANWANI & T. 2010)

Consider DAE $E\dot{x} = Ax$ with regular matrix pair (E, A) and corresponding consistency projector $\Pi_{(E,A)}$ and A^{diff} \Rightarrow

$$x(t) = e^{A^{\mathrm{diff}}(t-t_0)} \Pi_{(E,A)} x(t_0-) \in \mathfrak{C} \quad t \in (t_0,\infty).$$

Remark: At t_0 the presence of Dirac-impulses is possible!

Solution behavior for switched DAEs

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$$
 (swDAE)

with consistency projectors Π_k and flow matrices A_k^{diff}

Theorem (Impulse freeness, $T.\ 2009$)

All solutions of (swDAE) are impulse free, if

$$E_1(I - \Pi_1)\Pi_2 = 0 = E_2(I - \Pi_2)\Pi_1,$$
 (IFC)

Corollary

What is "Averaging"?

All solutions of (swDAE) satisfying (IFC) are given by

$$x(t) = e^{A_{p_{2i}}^{\text{diff}}(t-t_{2i})} \prod_{p_{2i}} \cdots e^{A_{2}^{\text{diff}}(t_{3}-t_{2})} \prod_{2} e^{A_{1}^{\text{diff}}(t_{2}-t_{1})} \prod_{1} x(t_{1}-t_{1})$$

$$= M(t-t_{i}) \left(e^{A_{2}^{\text{diff}}(1-t_{1})} \prod_{2} e^{A_{1}^{\text{diff}}} \prod_{1} t_{1}^{i} x(t_{1}-t_{1})\right)$$

Contents

- 1 What is "Averaging"?
- 2 Switched DAEs
- 3 Avaraging result for switched DAEs
- 4 Summary

Condition on consistency projectors

1

Assumption: commutative projectors

$$\Pi_1 \Pi_2 = \Pi_2 \Pi_1 \tag{C}$$

Lemma

(C)
$$\Rightarrow$$
 im $\Pi_1\Pi_2 = \text{im } \Pi_1 \cap \text{im } \Pi_2$

Remark: $\operatorname{im}\Pi_1 \cap \operatorname{im}\Pi_2 = \mathfrak{C}_1 \cap \mathfrak{C}_2$ and obviously the average system, if it exists, can only have solutions within the intersection of the consistency spaces, hence the projector

$$\Pi_{\cap} := \Pi_1 \Pi_2$$

plays a crucial role!

In the example it was: $\Pi_1\Pi_2=\Pi_1\neq\Pi_2=\Pi_2\Pi_1$

Main result

What is "Averaging"?

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$$
 (swDAE)

$$\Pi_1 \Pi_2 = \Pi_2 \Pi_1 \tag{C}$$

Theorem (Averaging for switched DAEs)

Consider impulse free (swDAE) with consistency projectors Π_1, Π_2 satisfying (C) and flow matrices A_1^{diff} , A_2^{diff} . The average system is

$$\dot{x}_{\mathsf{av}} = \Pi_{\cap} A_{\mathsf{av}}^{\mathsf{diff}} \Pi_{\cap} x_{\mathsf{av}}, \quad x_{\mathsf{av}}(0) = \Pi_{\cap} x(0-)$$

where $\Pi_{\cap} = \Pi_1 \Pi_2$ and

$$A_{\mathsf{av}}^{\mathsf{diff}} := dA_1^{\mathsf{diff}} + (1-d)A_2^{\mathsf{diff}}.$$

Then $\forall t \in (0, T]$

$$||x(t)-x_{\mathsf{av}}(t)||=O(p)$$

Example

Switch independent: $0 = v_{C_2} - Ri_R$

Switch dependent:

open closed

$$C_1 \dot{\mathbf{v}}_{C_1} = 0,$$
 $C_1 \dot{\mathbf{v}}_{C_1} + C_2 \dot{\mathbf{v}}_{C_2} = -i_R,$
 $C_2 \dot{\mathbf{v}}_{C_2} = -i_R,$ $0 = \mathbf{v}_{C_1} - \mathbf{v}_{C_2},$

 \Rightarrow switched DAE $E_{\sigma}\dot{x} = A_{\sigma}x$ with $x = (v_{C_1}, v_{C_2}, i_R)^{\top}$ given by

$$(E_1, A_1) = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ C_1 & 0 & 0 \\ 0 & C_2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & -R \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \end{pmatrix}$$

$$(E_2, A_2) = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ C_1 & C_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -R \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix})$$

Example

What is "Averaging"?

$$(E_1, A_1) = \left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ C_1 & 0 & 0 \\ 0 & C_2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & -R \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right)$$

$$(E_2, A_2) = \left(\begin{bmatrix} 0 & 0 & 0 & 0 \\ C_1 & C_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -R \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \right)$$

⇒ consistency projectors

$$\Pi_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{R} & 0 \end{bmatrix}, \quad \Pi_2 = \frac{1}{C_1 + C_2} \begin{bmatrix} C_1 & C_2 & 0 \\ C_1 & C_2 & 0 \\ \frac{C_1}{R} & \frac{C_2}{R} & 0 \end{bmatrix}.$$

and (C) holds:

$$\Pi_1\Pi_2=\Pi_2=\Pi_2\Pi_1$$

Simulation results

What is "Averaging"?

$$d_1 = 0.4, \quad p = 0.1$$

$$d_1 = 0.4, \quad p = 0.02$$

Summary

What is "Averaging"?

- Generalization of classical averaging result to switched DAEs
 - average system does not exist in all cases
 - Additional condition for consistency projectors necessary
 - classical average matrix must be projected to the right space
- Further results and open questions
 - More than two modes (submitted to CDC'13)
 - Commutativity of consistency projectors necessary?
 - Impulses: Convergence in the sense of distributions?