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Switched DAEs

Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

or short (and more general)

Eσ ẋ = Aσx + Bσu (swDAE)

Assumptions:

switching signal σ : R→ P piecewise-constant
in particular, no accumulation of switching times

each matrix pair (Ep,Ap), p ∈ P, is regular, i.e. det(sEp − Ap) 6≡ 0

piecewise-smooth distributional solution framework [T. 2009]
i.e. x ∈ Dn

pwC∞ , u ∈ Dm
pwC∞

DpwC∞ =

{
D = fD +

∑
t∈T

Dt

∣∣∣∣∣ f is piecewise smooth,T ⊆ R discrete

∀t ∈ T : Dt ∈ span{δt , δ′t , δ′′t , . . .}

}
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Controllability for switched systems

switched system
given by

Ep,Ap,Bp, p ∈ P

u

σ
x

Controllability 1

∀x0, x1 ∃(u, σ) which connects x0, x1

switched system
given by

Ep,Ap,Bp, p ∈ P
and σ

u x

Controllability 2

∀x0

?
, x1 ∃u which connects x0, x1

Role of switching signal

Two possible viewpoints:

1 σ is control input → nonlinear control problem

2 σ given → linear time-varying control problem
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Controllability in the behavioral sense

Eσ ẋ = Aσx + Bσu (swDAE)

Definition (Distributional solution behavior)

Bσ :=
{
w := (x , u) ∈ Dn+m

pwC∞

∣∣∣ Eσ ẋ = Aσx + Bσu
}

Definition (Controllability (from t = 0))

(swDAE) controllable :⇔ Bσ is controllable, i.e.

∀w1,w2 ∈ Bσ ∃T ≥ 0 ∃w1→2 ∈ Bσ :

w1→2
(−∞,0) = w1

(−∞,0) ∧ w1→2
(T ,∞) = w2

(T ,∞)

w1

w2

w1→2
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Comments on Controllability

Instantaneous Control

The definition allows T = 0 for two reasons:

1 Dirac impulse in u ⇒ Jump in x

2 Switch & Inconsistency ⇒ Jump in x

Lemma (Controllability to origin)

(swDAE) controllable ⇔

∀w ∈ Bσ ∃T ≥ 0 ∃w0 ∈ Bσ : w0
(−∞,0) = w(0,∞) ∧ w0

(T ,∞) = 0

Definition (Controllability subspace)

Cσ := { x0 ∈ Rn | ∃(x , u) ∈ Bσ ∃T ≥ 0 : x(0−) = x0 ∧ x(T+) = 0 }

Consistency

(swDAE) controllable 6⇒ Cσ = Rn
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Regular DAEs and the quasi-Weierstrass form

Theorem ((Quasi-)Weierstrass form, [Weierstrass 1868])

(E ,A) is regular

⇔ ∃S ,T invertible: (SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, N nilpotent

Calculate S ,T via Wong-sequences [Wong 1974; Berger, Ilchmann, T. 2012]

Definition (Some useful “projectors”)

Consistency projector: Π(E ,A) := T

[
I 0
0 0

]
T−1

Differential projector: Πdiff
(E ,A) := T

[
I 0
0 0

]
S

Impulse projector: Πimp
(E ,A) := T

[
0 0
0 I

]
S

Adiff := ΠdiffA, Bdiff := ΠdiffB, E imp := ΠimpE , B imp := ΠimpB
im ⊆ im Π(E ,A) = V∗, im ⊆ ker Π(E ,A) =W∗
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Controllability characterization

Theorem (T. 2012)

(x , u) smooth solution of (E ,A) ⇔ ∃c ∈ Rn ∀t ∈ R:
x(t) = eA

difftΠ(E ,A)c +
∫ t

0
eA

diff(t−s)Bdiffu(s) ds −
∑n−1

i=0 (E imp)iB impu(i)(t)

Corollary

Consistency space: im Π(E ,A) ⊕ im〈E imp,B imp〉
Controllability space: 〈Adiff,Bdiff〉 ⊕ im〈E imp,B imp〉

where 〈A,B〉 := [B,AB,A2B, . . . ,An−1B]

Theorem (Controllability characterization)

Eẋ = Ax + Bu controllable (in the behavioral sense)
⇔ 〈Adiff,Bdiff〉 = im Π(E ,A)

⇔ 〈Adiff,Bdiff〉+ ker Π(E ,A) = Rn
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Overall picture

im Π(E ,A) ker Π(E ,A)

Rn

im〈Adiff,Bdiff〉 im〈E imp,B imp〉

Controllability Space Consistency Space
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Controllability characterization: Single switch case

Eσ ẋ = Aσx + Bσu (swDAE)

Consider switching signal with one switch:

σε1(t) :=

{
1, t < ε

2, t ≥ ε

Need ε > 0 to allow mode 1 to act on trajectory.

Theorem (Controllability characterization)

(swDAE) with switching signal σε1 controllable

⇔ im〈Adiff
1 ,Bdiff

1 〉+ Π−1
(E2,A2) im〈Adiff

2 ,Bdiff
2 〉 ⊇ im Π(E1,A1)

⇔ ker Π(E1,A1) + im〈Adiff
1 ,Bdiff

1 〉+ Π−1
(E2,A2) im〈Adiff

2 ,Bdiff
2 〉 = Rn
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Conclusions

Controllability of switched DAEs

Distributional solution theory (jumps and Dirac impulses)
Controllability in the behavioral sense
Result for single-switch case
Just at the beginning of research

Open questions and further issues

Multiple-switch case
Control via switching signal
Controllability of Dirac impulses
Duality with observability
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