Switched differential algebraic equations: Jumps and impulses

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Lothar-Collatz-Kolloquium für Angewandte Mathematik Universität Hamburg, 06.11.2014

Introduction	
0000	

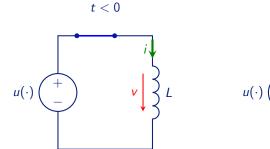
Observability

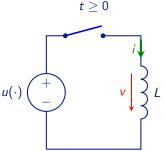
Contents

- Introduction
- 2 Switched DAEs: Solution Theory
 - Definition
 - Review: classical distribution theory
 - Restriction of distributions
 - Piecewise smooth distributions
 - Distributional solutions
 - Impulse-freeness
- Observability
 - Definition
 - The single switch result
 - Calculation of the four subspaces
 - C_
 - O_- and O_+^-
 - *O*^{imp}₊

Observability

Motivating example



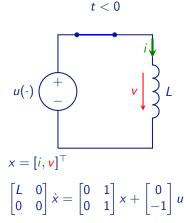


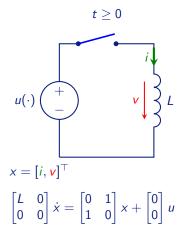
inductivity law: $L\frac{d}{dt}i = v$ switch dependent: 0 = v - u 0 = i

Stephan Trenn

Observability

Motivating example

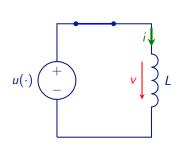




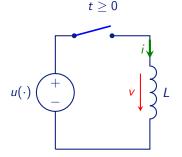
Stephan Trenn

Observability

Motivating example

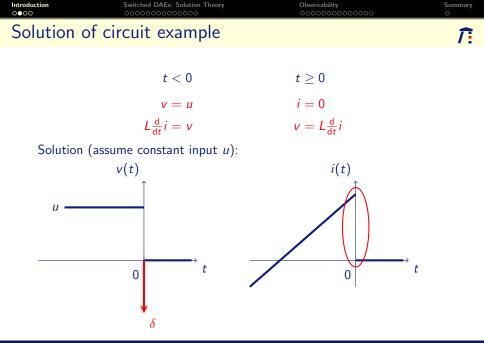


t < 0

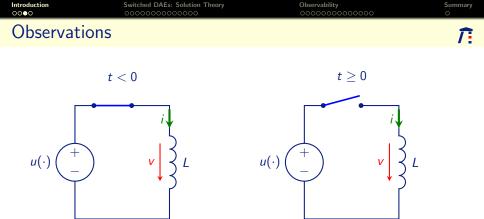


 $E_1 \dot{x} = A_1 x + B_1 u$ on $(-\infty, 0)$ $E_2 \dot{x} = A_2 x + B_2 u$ on $[0, \infty)$

 \rightarrow switched differential-algebraic equation



Stephan Trenn



Observations

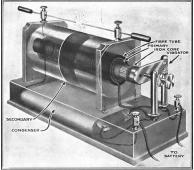
- $x(0^-) \neq 0$ inconsistent for $E_2 \dot{x} = A_2 x + B_2 u$
- unique jump from $x(0^-)$ to $x(0^+)$
- derivative of jump = Dirac impulse appears in solution

Observability

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artifact!



Drawing: Harry Winfield Secor, public domain

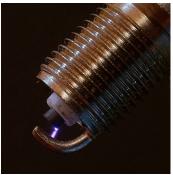


Foto: Ralf Schumacher, CC-BY-SA 3.0

Stephan Trenn

Observability

Contents

Switched DAEs: Solution Theory

- Definition
- Review: classical distribution theory
- Restriction of distributions
- Piecewise smooth distributions
- Distributional solutions
- Impulse-freeness

- Definition
- The single switch result
- Calculation of the four subspaces
 - 00
 - O_{\perp} and O_{\perp}^{-}
 - O^{imp}_⊥

Introduction	Switched DAEs: Solution Theory	Observability	Summary O
Definition			<i>Î</i> :

Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Definition (Switched DAE)

Switching signal $\sigma : \mathbb{R} \to \{1, \dots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$

$$y(t) = C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t)$$
(swDAE)

Attention

Each mode might have different consistency spaces \Rightarrow inconsistent initial values at each switch

 \Rightarrow Dirac impulses, in particular distributional solutions

Introduction	Switched DAEs: Solution Theory	Observability	Summary O
Definition			<i>Î</i> :
Switch -	→ Different DAE models (=models depending on time-varying podels)	· · · · · · · · · · · · · · · · · · ·	
Definitio	on (Switched DAE)		
Switching	g signal $\sigma:\mathbb{R} o \{1,\ldots, N\}$ pic	ks mode at each time $t\in \mathbb{R}$	R:

 $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ $y = C_{\sigma}x + D_{\sigma}u$

(swDAE)

Attention

Each mode might have different consistency spaces \Rightarrow inconsistent initial values at each switch \Rightarrow Dirac impulses, in particular distributional solutions

Intro	bd	u	io	
	D			

Observability

f:

Distribution theory - basic ideas

Distributions - overview

- Generalized functions
- Arbitrarily often differentiable
- Dirac-Impulse δ is "derivative" of Heaviside step function $\mathbb{1}_{[0,\infty)}$

Two different formal approaches

- Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
- Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Introd	luction

Observability

Î

Distributions - formal

Definition (Test functions)

 $\mathcal{C}_0^{\infty} := \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi \text{ is smooth with compact support } \}$

Definition (Distributions)

 $\mathbb{D} := \{ D : \mathcal{C}_0^{\infty} \to \mathbb{R} \mid D \text{ is linear and continuous } \}$

Definition (Regular distributions)

 $f \in L_{1,\mathsf{loc}}(\mathbb{R} o \mathbb{R})$: $f_{\mathbb{D}} : \mathcal{C}_{0}^{\infty} o \mathbb{R}, \ \varphi \mapsto \int_{\mathbb{R}} f(t)\varphi(t)\mathsf{d}t \in \mathbb{D}$

Definition (Derivative)

 $D'(\varphi) := -D(\varphi')$

Dirac Impulse at $t_0 \in \mathbb{R}$

 $\delta_{t_0}: \mathcal{C}_0^\infty \to \mathbb{R}, \quad \varphi \mapsto \varphi(t_0)$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Introduction	Switched DAEs: Solution Theory	Observability 00000000000000	Summar O
Multiplica	tion with functions		Ţ

Definition (Multiplication with smooth functions)

1

 $\alpha \in \mathcal{C}^{\infty}$: $(\alpha D)(\varphi) := D(\alpha \varphi)$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x + D_{\sigma}u$$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, C_{\sigma} \notin C^{\infty}$

Observation, for
$$\sigma_{[t_i,t_{i+1})} \equiv p_i$$
, $i \in \mathbb{Z}$:

$$\begin{array}{ll} E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \\ y = C_{\sigma}x + D_{\sigma}u \end{array} \Leftrightarrow \quad \forall i \in \mathbb{Z}: \begin{array}{l} (E_{p_i}\dot{x})_{[t_i, t_{i+1})} = (A_{p_i}x + B_{p_i}u)_{[t_i, t_{i+1})} \\ y_{[t_i, t_{i+1})} = (C_{p_i}x + D_{p_i}u)_{[t_i, t_{i+1})} \end{array}$$

New question: Restriction of distributions

Stephan Trenn

Intro	bd	u	io	
	D			

π

Desired properties of distributional restriction

Distributional restriction:

 $\{ M \subseteq \mathbb{R} \mid M \text{ interval } \} \times \mathbb{D} \to \mathbb{D}, \quad (M, D) \mapsto D_M$

and for each interval $M \subseteq \mathbb{R}$

• $D \mapsto D_M$ is a projection (linear and idempotent)

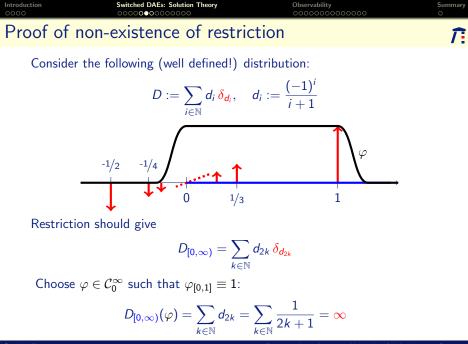
• $(M_i)_{i\in\mathbb{N}}$ pairwise disjoint, $M = \bigcup_{i\in\mathbb{N}} M_i$:

$$D_M = \sum_{i \in \mathbb{N}} D_{M_i}, \quad D_{M_1 \cup M_2 = D_{M_1} + D_{M_2}}, \quad (D_{M_1})_{M_2} = 0$$

Theorem ([T. 2009])

Such a distributional restriction does not exist.

Stephan Trenn



Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Dilemma

Switched DAEs: Solution Theory

Observability

Î

Switched DAEs

- Examples: distributional solutions
- Multiplication with non-smooth coefficients
- Or: Restriction on intervals

Distributions

- Distributional restriction not possible
- Multiplication with non-smooth coefficients not possible
- Initial value problems cannot be formulated

Underlying problem

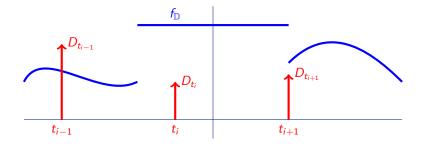
Space of distributions too big.

Introduction	Switched DAEs: Solution Theory	Observability	Summary O
Piecewise sn	nooth distributions		<i>Î</i> :

Define a suitable smaller space:

Definition (Piecewise smooth distributions $\mathbb{D}_{pwC^{\infty}}$, [T. 2009])

$$\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} := \left\{ \begin{array}{c} f_{\mathbb{D}} + \sum_{t \in \mathcal{T}} D_t \\ f_{\mathbb{D}} = \sum_{t \in \mathcal{T}} D_t \end{array} \middle| \begin{array}{c} f \in \mathcal{C}^{\infty}_{\mathsf{pw}}, \\ \mathcal{T} \subseteq \mathbb{R} \text{ locally finite}, \\ \forall t \in \mathcal{T} : D_t = \sum_{i=0}^{n_t} a_i^t \delta_t^{(i)} \end{array} \right\}$$



Observability

f:

Properties of $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

- $\mathcal{C}^{\infty}_{\mathsf{pw}}$ " \subseteq " $\mathbb{D}_{\mathsf{pw}}\mathcal{C}^{\infty}$
- $D \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} \Rightarrow D' \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$
- Well definded restriction $\mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty} \to \mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty}$

$$D = f_{\mathbb{D}} + \sum_{t \in T} D_t \quad \mapsto \quad D_M := (f_M)_{\mathbb{D}} + \sum_{t \in T \cap M} D_t$$

• Multiplication with $\alpha = \sum_{i \in \mathbb{Z}} \alpha_{i[t_i, t_{i+1})} \in \mathcal{C}_{pw}^{\infty}$ well defined:

$$\alpha D := \sum_{i \in \mathbb{Z}} \alpha_i D_{[t_i, t_{i+1})}$$

- Evaluation at $t \in \mathbb{R}$: $D(t^-) := f(t^-)$, $D(t^+) := f(t^+)$
- Impulses at $t \in \mathbb{R}$: $D[t] := \begin{cases} D_t, & t \in T \\ 0, & t \notin T \end{cases}$

Application to (swDAE)

(x, u) solves (swDAE) $:\Leftrightarrow$ (swDAE) holds in $\mathbb{D}_{pwC^{\infty}}$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Relevant questions

 $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ $y = C_{\sigma}x + D_{\sigma}u$ (swDAE)

Piecewise-smooth distributional solution framework

$$x\in \mathbb{D}^n_{\mathsf{pw}\mathcal{C}^\infty}$$
, $u\in \mathbb{D}^m_{\mathsf{pw}\mathcal{C}^\infty}$, $y\in \mathbb{D}^p_{\mathsf{pw}\mathcal{C}^\infty}$

- Existence and uniqueness of solutions?
- Jumps and impulses in solutions?
- Conditions for impulse free solutions?
- Control theoretical questions
 - Stability and stabilization
 - Observability and observer design
 - Controllability and controller design

Introduction

Switched DAEs: Solution Theory

Observability

Summary O

Existence and uniqueness of solutions for (swDAE)

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \qquad (swDAE)$$

Basic assumptions

•
$$\sigma \in \Sigma_0 := \left\{ \begin{array}{l} \sigma : \mathbb{R} \to \{1, \dots, N\} \\ \sigma \mid_{(-\infty, 0)} \text{ is constant} \end{array} \right\}$$

• (E_p, A_p) is regular $\forall p \in \{1, \dots, N\}$, i.e. $\det(sE_p - A_p) \neq 0$

Theorem (T. 2009)

Consider (swDAE) with regular (E_p, A_p) . Then

$$\forall \ u \in \mathbb{D}^m_{\mathsf{pw}\mathcal{C}^{\infty}} \ \forall \ \sigma \in \Sigma_0 \ \exists \ \text{solution} \ x \in \mathbb{D}^n_{\mathsf{pw}\mathcal{C}^{\infty}}$$

and $x(0^-)$ uniquely determines x.

Stephan Trenn

Introductio	

Observability

Inconsistent initial values

$$E\dot{x} = Ax + Bu, \quad x(0) = x^0 \in \mathbb{R}^n$$

Inconsistent initial value = special switched DAE

$$\dot{x}_{(-\infty,0)} = 0,$$
 $x(0^-) = x^0$
 $(E\dot{x})_{[0,\infty)} = (Ax + Bu)_{[0,\infty)}$

Corollary (Consistency projector)

Exist unique consistency projector $\Pi_{(E,A)}$ such that

 $x(0^+) = \Pi_{(E,A)} x^0$

 $\Pi_{(E,A)}$ can easily be calculated via the Wong sequences [T. 2009].

Introduction

Switched DAEs: Solution Theory

Observability

Sufficient conditions for impulse-freeness

Question

When are all solutions of homogenous (swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$ impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)

- (E_p, A_p) all have index one (i.e. $(sE A)^{-1}$ is proper) \Rightarrow (swDAE) impulse free
- all consistency spaces of (E_p, A_p) coincide
 ⇒ (swDAE) impulse free

Introduction 0000	Switched DAEs: Solution Theory	Observability
Characterizat	ion of impulse-freeness	

The switched DAE $E_{\sigma}\dot{x} = A_{\sigma}x$ is impulse free $\forall \sigma \in \Sigma_0$

$$\Leftrightarrow \quad E_q(I - \Pi_q)\Pi_p = 0 \quad \forall p, q \in \{1, \dots, N\}$$

where $\Pi_p := \Pi_{(E_p, A_p)}$, $p \in \{1, \dots, N\}$ is the p-th consistency projector.

Remark

- Index-1-case $\Rightarrow E_q(I \Pi_q) = 0 \ \forall q$
- Consistency spaces equal $\Rightarrow (I \Pi_a)\Pi_p = 0 \forall p, q$

Stephan Trenn

Switched differential algebraic equations: Jumps and impulses

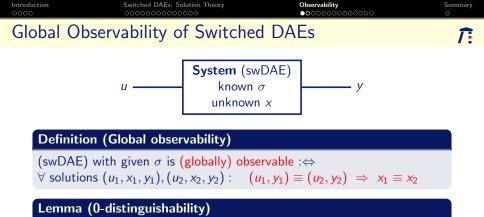
Summary

f

Contents

Introduction

- 2 Switched DAEs: Solution Theory
 - Definition
 - Review: classical distribution theory
 - Restriction of distributions
 - Piecewise smooth distributions
 - Distributional solutions
 - Impulse-freeness
- Observability
 - Definition
 - The single switch result
 - Calculation of the four subspaces
 - \mathfrak{C}_{-} • \mathcal{O}_{-} and \mathcal{O}_{+}^{-}
 - *O*₊^{imp}



(swDAE) is observable if, and only if,

$$y \equiv 0$$
 and $u \equiv 0 \Rightarrow x \equiv 0$.

Hence consider in the following (swDAE) without inputs:

 $\begin{aligned} E_{\sigma} \dot{x} &= A_{\sigma} x \\ v &= C_{\sigma} x \end{aligned} \quad \text{and observability question:}$

$$y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0$$

Introduction	Switched DAEs: Solution Theory	Observability O●○○○○○○○○○○	Summary O
Motivatin	ig example		<i>Î</i> :
	System 1:	System 2:	
$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}$	
	$x = \dot{x}_3 = 0, x_2 = 0, \dot{x}_1 = 0$ $\Rightarrow x_1 \text{ unobservable}$	$y = x_3 = \dot{x}_1, x_1 = 0, \dot{x}_2 = 0$ $\Rightarrow x_2$ unobservable)
$\sigma(\cdot):1 ightarrow$	2	$\sigma(\cdot): 2 ightarrow 1$	
$\begin{array}{l} Jump in x_1 \\ \Rightarrow Observa \end{array}$	roduces impulse in <i>y</i> ability	Jump in x_2 no influence in y $\Rightarrow x_2$ remains unobservable	
Questio	n		
r-	$A_{p}x + B_{p}u$ not $\stackrel{?}{\Rightarrow}$ $C_{p}x + D_{p}u$ observable $\stackrel{?}{\Rightarrow}$	$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$ $y = C_{\sigma}x + D_{\sigma}u$ observable	

Stephan Trenn

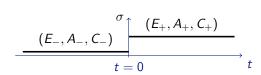
Technomathematics group, University of Kaiserslautern, Germany

Introduction

Switched DAEs: Solution Theory

Observability

Î



Theorem (Unobservable subspace, Tanwani & T. 2010)

For (swDAE) with a single switch the following equivalence holds

$$y \equiv 0 \quad \Leftrightarrow \quad x(0^-) \in \mathcal{M}$$

where

$$\mathcal{M}:=\mathfrak{C}_{-}\cap \mathsf{ker}\ \mathcal{O}_{-}\cap \mathsf{ker}\ \mathcal{O}_{+}^{-}\cap \mathsf{ker}\ \mathcal{O}_{+}^{\mathsf{imp}}$$

In particular:

(swDAE) observable
$$\Leftrightarrow \mathcal{M} = \{0\}$$
.

What are these four subspace?

Stephan Trenn

Switched differential algebraic equations: Jumps and impulses

The single switch result

Observability

î:

The four subspaces

Unobservable subspace: $\mathcal{M} := \mathfrak{C}_{-} \cap \ker \mathcal{O}_{-} \cap \ker \mathcal{O}_{+}^{-} \cap \ker \mathcal{O}_{+}^{\mathsf{imp}}$, i.e.

$$x(0^{-}) \in \mathcal{M} \quad \Leftrightarrow \quad y_{(-\infty,0)} \equiv 0 \ \land \ y[0] = 0 \ \land \ y_{(0,\infty)} \equiv 0$$

The four spaces

- Consistency: $x(0^-) \in \mathfrak{C}_-$
- Left unobservability: $y_{(-\infty,0)} \equiv 0 \iff x(0^-) \in \ker O_-$
- Right unobservability: $y_{(0,\infty)} \equiv 0 \iff x(0^-) \in \ker O_+^-$
- Impulse unobervability: $y[0] = 0 \iff x(0^{-}) \in \ker O^{\text{imp}}_+$

Question

How to calculate these four spaces?

Introduction	Switched DAEs: Solution Theory	Observability	Summary O
Wong seq	uences		<i>î</i> :

Definition

Let $E, A \in \mathbb{R}^{m \times n}$. The corresponding Wong sequences of the pair (E, A) are:

$$\begin{aligned} \mathcal{V}_0 &:= \mathbb{R}^n, \qquad \mathcal{V}_{i+1} &:= A^{-1}(E\mathcal{V}_i), \qquad i = 0, 1, 2, 3, \dots \\ \mathcal{W}_0 &:= \{0\}, \qquad \mathcal{W}_{j+1} &:= E^{-1}A(\mathcal{W}_j), \qquad j = 0, 1, 2, 3, \dots \end{aligned}$$

Note: $M^{-1}S := \{ x \mid Mx \in S \}$ and $MS := \{ Mx \mid x \in S \}$

Clearly, $\exists i^*, j^* \in \mathbb{N}$

$$\mathcal{V}_0 \supset \mathcal{V}_1 \supset \ldots \supset \mathcal{V}_{i^*} = \mathcal{V}_{i^*+1} = \mathcal{V}_{i^*+2} = \ldots$$
$$\mathcal{W}_0 \subset \mathcal{W}_1 \subset \ldots \subset \mathcal{W}_{j^*} = \mathcal{W}_{j^*+1} = \mathcal{W}_{j^*+2} = \ldots$$

Wong limits:

$$\mathcal{V}^* := \bigcap_{i \in \mathbb{N}} \mathcal{V}_i = \mathcal{V}_{i^*}$$

$$\mathcal{W}^* = igcup_{j\in\mathbb{N}} \mathcal{W}_j = \mathcal{W}_{j^*}$$

Stephan Trenn

Observability

Î:

Wong sequences and the QWF

Theorem (QWF [Berger, Ilchmann & T. 2012])

The following statements are equivalent for square $E, A \in \mathbb{R}^{n \times n}$:

- (i) (E, A) is regular
- (ii) $\mathcal{V}^* \oplus \mathcal{W}^* = \mathbb{R}^n$
- (iii) $E\mathcal{V}^* \oplus A\mathcal{W}^* = \mathbb{R}^n$

In particular, with im $V = \mathcal{V}^*$, im $W = \mathcal{W}^*$

(E, A) regular \Rightarrow T := [V, W] and $S := [EV, AW]^{-1}$ invertible

and S, T yield quasi-Weierstrass form (QWF):

$$(SET, SAT) = \left(\begin{bmatrix} I & \\ & N \end{bmatrix}, \begin{bmatrix} J & \\ & I \end{bmatrix} \right), N \text{ nilpotent}$$

Int	tr	00	dι	IC	ti	0	n
		0					

Observability

Î

Calculation of Wong sequences

Remark

Wong sequences can easily be calculated with Matlab even when the matrices still contain symbolic entries (like "R", "L", "C").

```
function V=getPreImage(A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
else
    error('Both matrices must have same number of rows');
end;
```

Introduction

Switched DAEs: Solution Theory

Observability

Consistency space

$$x(0^-) \in \mathfrak{C}_- \cap \ker \mathcal{O}_- \cap \ker \mathcal{O}_+^- \cap \ker \mathcal{O}_+^{\operatorname{imp}-} \quad \Leftrightarrow \quad y \equiv 0$$

Corollary from QWF

 $\mathfrak{C}_{-}=\mathcal{V}_{-}^{*}$

where \mathcal{V}_{-}^{*} is the first Wong limit of (E_{-}, A_{-}) .

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Observability

The differential projector

For regular
$$(E, A)$$
 let $(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}$.

Definition (Differential "projector")

$$\Pi^{\rm diff}_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S \quad \text{and} \quad \boxed{A^{\rm diff} := \Pi^{\rm diff}_{(E,A)} A}$$

Following Implication holds:

x solves
$$E\dot{x} = Ax \Rightarrow \dot{x} = A^{\text{diff}}x$$

Hence, with y = Cx,

 $y \equiv 0 \quad \Rightarrow \quad x(0) \in \ker[C/CA^{\operatorname{diff}}/C(A^{\operatorname{diff}})^2/\cdots/C(A^{\operatorname{diff}})^{n-1}]$

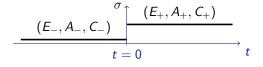
Stephan Trenn

Introduction

Switched DAEs: Solution Theory

Observability

The spaces O_{-} and O_{+}



Hence

$$y_{(-\infty,0)} \equiv 0 \implies x(0^{-}) \in \ker [\underline{C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}]}_{:= O_{-}}$$

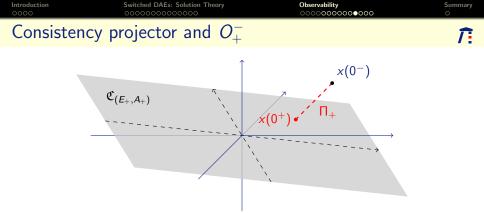
and

$$y_{(0,\infty)} \equiv 0 \quad \Rightarrow \quad x(0^+) \in \ker \underbrace{\left[C_+ / C_+ A_+^{\text{diff}} / C_+ (A_+^{\text{diff}})^2 / \cdots / C_+ (A_+^{\text{diff}})^{n-1}\right]}_{:= O_+}$$

Question: $x(0^+) \in \ker O_+ \Rightarrow x(0^-) \in ?$

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany



Assume $(S_+E_+T_+, S_+A_+T_+) = \left(\begin{bmatrix} I & 0 \\ 0 & N_+ \end{bmatrix}, \begin{bmatrix} J_+ & 0 \\ 0 & I \end{bmatrix} \right)$:

Consistency projector $x(0^+) = \Pi_+ x(0^-)$ where

Stephan Trenn

$$\Pi_+ := T_+ \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T_+^{-1}$$

 $x(0^+) \in \ker O_+$

$$\Rightarrow x(0^-) \in \Pi_+^{-1} \ker O_+ = \ker \underbrace{O_+\Pi_+}_{=: O_+^-}$$

Introduction

Switched DAEs: Solution Theory

Observability

f:

The impulsive effect

Assume
$$(S_+E_+T_+, S_+A_+T_+) = \left(\begin{bmatrix} I & 0\\ 0 & N_+ \end{bmatrix}, \begin{bmatrix} J_+ & 0\\ 0 & I \end{bmatrix} \right)$$
:

Definition (Impulse "projector")

$$\Pi^{\rm imp}_+ := T_+ \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S_+ \quad \text{and} \quad \boxed{E^{\rm imp}_+ := \Pi^{\rm imp}_+ E_+}$$

Impulsive part of solution:

$$x[0] = -\sum_{i=0}^{n-1} (E_{+}^{imp})^{i+1} x(0^{-}) \, \delta_{0}^{(i)}$$
Dirac impulses

Conclusion:

$$y[0] = 0 \quad \Rightarrow \quad C_+ x[0] = 0 \quad \Rightarrow \quad \left| x(0^-) \in \ker O^{\mathsf{imp}}_+ \right|$$

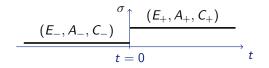
where

$$O^{\text{imp}}_+ := [C_+ E^{\text{imp}}_+ / C_+ (E^{\text{imp}}_+)^2 / \cdots / C_+ (E^{\text{imp}}_+)^{n-1}]$$

Stephan Trenn

Observability summary

Summary



$$y \equiv 0 \quad \Leftrightarrow \quad x(0^-) \in \mathfrak{C}_- \cap \ker O_- \cap \ker O_+^- \cap \ker O_+^{\mathsf{imp}-}$$

with

•
$$\mathfrak{C}_{-} = \mathcal{V}_{-}^{*}$$
 (first Wong limit)
• $O_{-} = [C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}]$
• $O_{+}^{-} = [C_{+}/C_{+}A_{+}^{\text{diff}}/C_{+}(A_{+}^{\text{diff}})^{2}/\cdots/C_{+}(A_{+}^{\text{diff}})^{n-1}]\Pi_{+}$
• $O_{+}^{\text{imp}} = [C_{+}E_{+}^{\text{imp}}/C_{+}(E_{+}^{\text{imp}})^{2}/\cdots/C_{+}(E_{+}^{\text{imp}})^{n-1}]$

Stephan Trenn

Introduction	Switched DAEs: Solution Theory	Observability ○○○○○○○○○○○●				
Example	revisited					
Г1 0	System 1:	System 2:				
0 0 0	$ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x $ $ y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x $	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$				
C	$\sigma(\cdot): 1 \to 2$ gives	$\sigma(\cdot): 2 ightarrow 1$ gives				
$\mathfrak{C}_{-} = \operatorname{span}\{e_1, e_3\},$ ker $O_{-} = \operatorname{span}\{e_1, e_2\}$		$\mathfrak{C}_{-} = \operatorname{span}\{e_2\},\$ ker $\mathcal{O}_{-} = \operatorname{span}\{e_1, e_2\}$				
$\ker O_+^- = \operatorname{span}\{e_1, e_2, e_3\},$		$\ker O_+^- = \operatorname{span}\{e_1, e_2\},$				
$\ker O^{imp}_+ = span\{e_2, e_3\}$		$\ker O^{imp}_+ = span\{e_1, e_2, e_3\}$				
	$\Rightarrow \mathcal{M} = \{0\}$	$\Rightarrow \mathcal{M} = \operatorname{span}\{e_2\}$				

Î

Switched differential algebraic equations: Jumps and impulses

Introduction

Switched DAEs: Solution Theory

Observability

(swDAE)

Î

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x + D_{\sigma}u$$

Piecewise-smooth distributional solution framework

$$x\in \mathbb{D}^n_{\mathsf{pw}\mathcal{C}^\infty}$$
, $u\in \mathbb{D}^m_{\mathsf{pw}\mathcal{C}^\infty}$, $y\in \mathbb{D}^p_{\mathsf{pw}\mathcal{C}^\infty}$

- Existence and uniqueness of solutions? \checkmark
- Jumps and impulses in solutions? \checkmark
- Conditions for impulse free solutions? \checkmark
- Control theoretical questions
 - Stability \checkmark and stabilization
 - Observability \checkmark and observer design \checkmark
 - Controllability \checkmark and controller design

Major future challenge

Extension to nonlinear case.

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany