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Switched DAEs

Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

or short (and actually more suitable)

Eσ ẋ = Aσx + Bσu (swDAE)

Assumptions:

switching signal σ : R→ P piecewise-constant
in particular, no accumulation of switching times

each matrix pair (Ep,Ap), p ∈ P, is regular, i.e. det(sEp − Ap) 6≡ 0

piecewise-smooth distributional solution framework [T. 2009]
i.e. x ∈ Dn

pwC∞ , u ∈ Dm
pwC∞

DpwC∞ =

{
D = fD +

∑
t∈T

Dt

∣∣∣∣∣ f is piecewise smooth,T ⊆ R discrete

∀t ∈ T : Dt ∈ span{δt , δ′t , δ′′t , . . .}

}
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Controllability in the behavioral sense

Eσ ẋ = Aσx + Bσu (swDAE)

Definition (Distributional solution behavior)

Bσ :=
{
w := (x , u) ∈ Dn+m

pwC∞

∣∣∣ Eσ ẋ = Aσx + Bσu
}

Definition (Controllability (from t = 0))

(swDAE) controllable :⇔ Bσ is controllable, i.e.

∀w1,w2 ∈ Bσ ∃T ≥ 0 ∃w1→2 ∈ Bσ :

w1→2
(−∞,0) = w1

(−∞,0) ∧ w1→2
(T ,∞) = w2

(T ,∞)

w1
w2

w1→2
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Comments on controllability definition

Lemma (Controllability to origin)

(swDAE) controllable ⇔

∀w ∈ Bσ ∃T ≥ 0 ∃w0 ∈ Bσ : w0
(−∞,0) = w(0,∞) ∧ w0

(T ,∞) = 0

Definition (Controllability subspaces)

C[t0,t1]
σ :=

{
x0 ∈ Rn

∣∣ ∃(x , u) ∈ Bσ : x(t−0 ) = x0 ∧ x(t+
1 ) = 0

}
Feasibility of initial values

F t−

σ := { x(t−) | (x , u) ∈ Bσ } 6= Rn (in general)

(swDAE) controllable 6⇒ C[0,T ]
σ = Rn

(swDAE) controllable ⇔ C[0,T ]
σ = F0−

σ

Note: F t−

σ 6= F t−

σ(t−) =: Fσ(t−) in general!
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Illustrative example

mode -1 mode 0 mode 1

(−∞, 0) [0, t1) [t1,∞)

ẋ1 = 0 ẋ1 = 0 ẋ1 = u

x2 = 0 x2 = u ẋ2 = u

C−1 = {0} C0 = im

[
0
1

]
C1 = im

[
1
1

]
F−1 = im

[
1
0

]
F0 = R2 F1 = R2

Controllability space

C[0,t1]
σ = C[0,t1+ε]

σ = im

[
1
0

]
= F−1 ⇒ controllable
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Regular DAEs and the quasi-Weierstrass form

Theorem ((Quasi-)Weierstrass form, [Weierstrass 1868])

(E ,A) is regular

⇔ ∃S ,T invertible: (SET ,SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, N nilpotent

Calculate S ,T via Wong-sequences [Wong 1974; Berger, Ilchmann, T. 2012]

Definition (Some useful “projectors”)

Consistency projector: Π := T

[
I 0
0 0

]
T−1

Differential projector: Πdiff := T

[
I 0
0 0

]
S

Impulse projector: Πimp := T

[
0 0
0 I

]
S

Adiff := ΠdiffA, Bdiff := ΠdiffB, E imp := ΠimpE , B imp := ΠimpB
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Controllability characterization (unswitched case)

Theorem (T. 2012)

(x , u) smooth solution of (E ,A) ⇔ ∃x0 ∈ Rn ∀t ∈ R:
x(t) = eA

difftΠx0 +
∫ t

0
eA

diff(t−s)Bdiffu(s) ds −
∑n−1

i=0 (E imp)iB impu(i)(t)

Corollary (Feasibility and controllability spaces)

Feasibility space: F = im Π ⊕ 〈E imp,B imp〉
Controllability space: C = 〈Adiff,Bdiff〉 ⊕ 〈E imp,B imp〉

where 〈A,B〉 := im[B,AB,A2B, . . . ,An−1B]

Corollary (Controllability characterization)

Eẋ = Ax + Bu controllable (in the behavioral sense)
⇔ 〈Adiff,Bdiff〉 = im Π
⇔ 〈Adiff,Bdiff〉+ ker Π = Rn
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Overall picture

im Π ker Π

Rn

〈Adiff,Bdiff〉 〈E imp,B imp〉

Controllability Space Feasibility Space

Attention

Controllability independent of 〈E imp,B imp〉, but the latter essential in
switched case (previous example)
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Recursive formula for controllability space

Eσ ẋ = Aσx + Bσu (swDAE)

with switching signal (0 =: t0 < t1 < t2 < . . .) and its restriction (s ≥ 0)

σ(t) :=

{
−1, t < 0,

i , t ∈ [ti , ti+1),
σ≥s(t) :=

{
σ(s+), t ≤ s,

σ(t), t ≥ s

Theorem (Controllability recursion, KRT 2015)

C[t`,t`]
σ≥t`

= C[t`,t`+ε]
σ≥t`

= C`, ` ∈ N

C[tk−1,`]
σ≥tk−1

=
(
Ck−1 + e−A

diff
k−1(tk−tk−1)Π−1

k C
[tk ,t`]
σ≥tk

)
∩ Fk−1, 0 < k ≤ `

C[0,t`]
σ = Π−1

0 C
[0,t`]
σ≥0
∩ F−1

!
= F−1
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Conclusions

Controllability of switched DAEs
Distributional solution theory (jumps and Dirac impulses)
Controllability in the behavioral sense
Recursion formula for controllability space
Several pitfalls on the way

〈E imp,B imp〉 irrelevant for unswitched controllability, but essential for
switched case, in particular

〈Adiff
0 ,Bdiff

0 〉+ Π−1
1 〈A

diff
1 ,Bdiff

1 〉 ⊇ F0

6⇔

〈Adiff
0 ,Bdiff

0 〉 ⊕ 〈E
imp
0 ,B imp

0 〉+ Π−1
1 〈A

diff
1 ,Bdiff

1 〉 ⊇ F0 ⊕ 〈E imp,B imp
0 〉

6⇔

〈Adiff
0 ,Bdiff

0 〉 ⊕ ker Π0 + Π−1
1 〈A

diff
1 ,Bdiff

1 〉 ⊇ Rn

F t−
σ 6= Fσ(t−)

Further topics
Duality with observability X
Controllability of Dirac impulses ?
Control via switching signal ?
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