Controllability and observability are not dual for switched DAEs

Stephan Trenn joint work with Ferdinand Küsters (Fraunhofer ITWM)

Technomathematics group, University of Kaiserslautern, Germany

SciCADE 2015, Potsdam Friday, 18.09.2015, 11:00

2 Adjoint systems for switched DAEs

3 Dual systems for switched DAEs

Observability, Determinability, Controllability, Reachability

Stephan Trenn

 A counter example
 Adjoint systems for switched DAEs
 Dual systems for switched DAEs
 Observability, Determinability, Controllability, Reachability

 0 ● 0 0
 00000
 0000
 0000
 0000

Naive dual of a switched DAE

1

Switched DAE

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x$$

Dual for switched DAE? $E_{\sigma}^{\top} \dot{p} = A_{\sigma}^{\top} p + C_{\sigma}^{\top} u_d$ $y_d = B_{\sigma}^{\top} p$

Non-switched DAE

$$E\dot{x} = Ax + Bu$$
$$y = Cx$$

Classical dual [Cobb '84] $E^{\top}\dot{p} = A^{\top}p + C^{\top}u_d$ $y_d = B^{\top}p$

Stephan Trenn

		OUDUAL Systems for switched DAEs	Observability, Determinability, Controllability, Reach	ability
An evan	nnle			1

All example

$E_{\sigma}\dot{x} =$	$= A_{\sigma}x + B_{\sigma}u$, $y =$	$C_{\sigma} x$	Solution
on $(-\infty,1)$:	on [1,2):	on [2, ∞):	
$\dot{x}_1 = 0 + 0 \cdot u$	$\dot{x}_1 = 0 + 0 \cdot u$	$\dot{x}_1 = 0 + 0 \cdot u$	$x_1(t)=x_1^0 orall t\in \mathbb{R}$
$0 = x_2$	$0 = x_1 - x_2$	$\dot{x}_{2} = 0$	$x_2(t) = \mathbb{1}_{[1,\infty)}(t) x_1^0$
y = 0	y = 0	$y = x_2$	$y(t) = \mathbb{1}_{[2,\infty)}(t) x_1^0$
			\Rightarrow observable

$$E_{\sigma}^{ op}\dot{p}=A_{\sigma}^{ op}p+C_{\sigma}^{ op}u_{d}$$
, $y_{d}=B_{\sigma}^{ op}p$

$\dot{p}_1 = 0 + 0 \cdot u_d$	$\dot{p}_1 = p_2 + 0 \cdot u_d$	$\dot{p}_1 =$
$0 = p_2$	$0 = -p_2$	$\dot{p}_2 =$
$y_d = 0$	$y_d = 0$	$y_d =$

$$egin{aligned} p_1(t) &= p_1^0 \quad orall t \in \mathbb{R} \ p_2(t) &= \mathbbm{1}_{[2,\infty)} \int_2^t u_d \end{aligned}$$

 \Rightarrow **not** controllable

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

0 *u*_d 0

A counter example Adjoint systems for switched DAEs Dual systems for switched DAEs Observability, Determinability, Controllability, Reachability OOO 00000 00000 00000 00000

Some remarks concerning duality

T

• Switched DAEs are special time-varying DAEs:

$$E(t)\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
$$y = C(t)x(t)$$

whose dual is not (c.f. Balla & März '02, Kunkel & Mehrmann '08)

$$E(t)^{\top} \dot{p}(t) = A(t)^{\top} p(t) + C(t)^{\top} u_d(t)$$
$$y_d = B(t)^{\top} x(t)$$

• For time-varying systems, adjoint system and dual system have to be distinguished, here:

	Adjoint systems for switched DAEs		Observability, Determinability, Controllability, Reachability
0000	000000	0000	

2 Adjoint systems for switched DAEs

3 Dual systems for switched DAEs

Observability, Determinability, Controllability, Reachability

Stephan Trenn

Adjointness for linear ODEs

Π

Linear ODE

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Adjoint of linear ODE

$$\dot{p} = -A^{\top}p - C^{\top}u_a$$

 $y_a = B^{\top}p$

Input-State-Output-maps

• Input-map:

 $u(\cdot)\mapsto g(\cdot):=Bu(\cdot)$

• Input-state-map:

 $(x_0, g(\cdot)) \mapsto (x(T), x(\cdot))$

- $x(\cdot)$ solves $\dot{x} = Ax + g$, $x(0) = x_0$
- State-output-map:

Stephan Trenn

 $x(\cdot)\mapsto y(\cdot):=Cx(\cdot)$

Adjoint maps

• Adjoint of input-map:

 $p(\cdot)\mapsto y_a(\cdot):=B^{\top}p(\cdot)$

• Adjoin of input-state-map: $(p_T, h(\cdot)) \mapsto (p(0), p(\cdot))$

p solves $\dot{p} = -A^{\top}p - h$, $p(T) = p_T$

• Adjoint of state-output-map: $u_a(\cdot) \mapsto h(\cdot) := C^\top u_a(\cdot)$

Behavior:
$$\mathcal{B}(A, B, C) := \{ (u, x, y) \mid \dot{x} = Ax + Bu, y = Cx \}$$

Theorem (van der Schaft '91)

 (u_a, p, y_a) solves adjoint system \Leftrightarrow following adjointness condition holds

$$\frac{\mathrm{d}}{\mathrm{d}t}(p^{\top}x) - y_a^{\top}u + u_a^{\top}y = 0 \quad \forall (u, x, y) \in \mathcal{B}(A, B, C)$$
(A)

In terms of behaviors:

$$\{ (u_a, p, y_a) \mid (\mathbf{A}) \text{ holds } \} = \mathcal{B}(-A^{\top}, -C^{\top}, B^{\top})$$

 $\mathcal{B}(E(\cdot), A(\cdot)) := \{ x \mid E(\cdot)\dot{x} = A(\cdot)x \}$

Adjointness condition for $E(t)\dot{x}(t) = A(t)x(t)$, Balla & März '02

 $\frac{\mathrm{d}}{\mathrm{d}t}(p^{\top}E(\cdot)x)=0,\quad\forall x\in\mathcal{B}(E(\cdot),A(\cdot))$

Stephan Trenn

Adjointness for switched DAEs
$$\mathcal{B}(E,A) := \{ (u, x, y) \mid \dot{x} = Ax + Bu, y = Cx \}$$

Adjointness for $\dot{x} = Ax + Bu, y = Cx \}$
 $\mathcal{B}(A, B, C) := \{ (u, x, y) \mid \dot{x} = Ax + Bu, y = Cx \}$
 $\mathcal{B}(E,A) := \{ x \mid E\dot{x} = Ax \}$
Adjointness for $\dot{x} = Ax + Bu, y = Cx$
 $\forall (u, x, y) \in \mathcal{B}(A, B, C) :$
 $\frac{d}{dt}(p^{\top}x) - y_a^{\top}u + u_a^{\top}y = 0$
 $\mathcal{B}(E,A) := \{ x \mid E\dot{x} = Ax \}$
 $\mathcal{B}(E,A) := \{ x \mid E\dot{x} = Ax \}$
 $\mathcal{B}(E,A) := \{ x \mid E\dot{x} = Ax \}$

Adjointness condition for switched DAEs and adjoint behavior

With $\mathcal{B}_{\sigma} := \{ (u, x, y) \mid E_{\sigma} \dot{x} = A_{\sigma} x + B_{\sigma} u, y = C_{\sigma} x \}$ let adjointness condition be:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{p}^{\top}\boldsymbol{E}_{\sigma}\boldsymbol{x}) - \boldsymbol{y}_{a}^{\top}\boldsymbol{u} + \boldsymbol{u}_{a}^{\top}\boldsymbol{y} = 0 \quad \forall (\boldsymbol{u},\boldsymbol{x},\boldsymbol{y}) \in \mathcal{B}_{\sigma}$$
 (A_{\sigma})

Furthermore, a behavior $\mathcal{B} \subseteq \{(u_a, p, y_a)\}$ is called a behavioral adjoint of \mathcal{B}_{σ} : \Leftrightarrow

$$(\mathsf{A}_\sigma)$$
 holds $orall (u,x,y)\in \mathcal{B}_\sigma$

Stephan Trenn

Behavioral adjoint representation

Theorem

Consider

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(p^{\top}E_{\sigma}) &= -p^{\top}A_{\sigma} - u_{a}^{\top}C_{\sigma}, \\ y_{a}^{\top} &= p^{\top}B_{\sigma} \end{aligned}$$
 (adj

Then

$$\mathcal{B}_{\sigma}^{\mathsf{a}} := \{ (u_{\mathsf{a}}, p, y_{\mathsf{a}}) \mid (u_{\mathsf{a}}, p, y_{\mathsf{a}}) \text{ satisfies } (\mathsf{adj}) \}$$

is a behavioral adjoint of \mathcal{B}_{σ} .

Attention

- Switched DAE and (adj) are equations in a certain distribution space
- In this space only non-commutative multiplication is defined, in particular $p^{\top}A_{\sigma} \neq (A_{\sigma}^{\top}p)^{\top}$
- (adj) is not causal
- Piecewise-constant E_{σ} is differentiated \rightarrow Dirac impulses occur in coefficient matrices

Stephan Trenn

Problem: Adjoint is not a switched DAE

Fundamental problem

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(p^{\top}E_{\sigma}) &= -p^{\top}A_{\sigma} - u_{a}^{\top}C_{\sigma}, \\ y_{a}^{\top} &= p^{\top}B_{\sigma} \end{aligned}$$
 (adj)

is not a switched DAE, in particular:

- Solution theory?
- Controllability, observability?

Time-inversion

Problems can be resolved by considering time-inversion and recalling

dual = time-inverted adjoint

Stephan Trenn

A counter example	Adjoint systems for switched DAEs	Dual systems for switched DAEs	Observability, Determinability, Controllability, Reachability
0000	000000	0000	0000

1 A counter example

2 Adjoint systems for switched DAEs

3 Dual systems for switched DAEs

Observability, Determinability, Controllability, Reachability

Stephan Trenn

Time-inversion and T-dual

Definition (Time inversion for distributions)

For $T \in \mathbb{R}$ let $\mathscr{T}_T : \mathbb{D} \to \mathbb{D}$ denote the time-inversion at T on the space of distributions \mathbb{D} , i.e. for all test functions $\varphi \in C_0^\infty$ and all distributions $D \in \mathbb{D}$:

 $\mathscr{T}_{T}(D)(\varphi) := D(\varphi(T - \cdot))$

Convention: s = T - t and $\widetilde{\sigma} := \sigma(T - \cdot)$

Definition (*T*-dual of switched DAE)

Let \mathcal{B}_{σ}^{a} be a behavioral adjoint of switched DAE. The T-dual behavior of the switched DAE is

$$\mathcal{B}_{\sigma}^{T\text{-dual}} := \{ (u_d, z, y_d) \mid (u_a, p, y_a) = (\mathscr{T}_{\mathsf{T}}(u_d), \mathscr{T}_{\mathsf{T}}(z), \mathscr{T}_{\mathsf{T}}(y_d)) \in \mathcal{B}_{\sigma}^a \}$$

Question

Representable as switched DAE?

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

A counter example	Adjoint systems for switched DAEs	Dual systems for switched DAEs	Observability, Determinability, Controllability, Reachability
		0000	

Theorem (Switched DAE representation of *T*-dual)

$$\frac{\mathrm{d}}{\mathrm{ds}}(E_{\widetilde{\sigma}}^{\top}z) = A_{\widetilde{\sigma}}^{\top}z + C_{\widetilde{\sigma}}^{\top}u_{d}$$
$$y_{d} = B_{\widetilde{\sigma}}^{\top}y$$

(dual)

is a T-dual of switched DAE.

Almost a switched DAE:

(dual)
$$\Leftrightarrow \begin{array}{l} E_{\widetilde{\sigma}}^{\top} \dot{z} = A_{\widetilde{\sigma}}^{\top} z + C_{\widetilde{\sigma}}^{\top} u_d - \left(\frac{d}{ds} E_{\widetilde{\sigma}}^{\top}\right) z \\ y_d = B_{\widetilde{\sigma}}^{\top} y \end{array}$$

where

$$\frac{\mathrm{d}}{\mathrm{d}s}E_{\widetilde{\sigma}}^{\top} = \sum_{i} (E_{i-1} - E_i)^{\top} \delta_{\mathcal{T}-\mathbf{t}_i}$$

⇒ New system class: Switched DAEs with impacts (c.f. T. & Willems '12)

Stephan Trenn

A counter example Adjoint systems for switched DAEs Ous systems for switched DAEs Observability, Determinability, Controllability, Reachability OOO

Switched DAEs with impacts and their dual

Sw. DAEs with impacts

 $E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u + G[\cdot]x$ $y = C_{\sigma}x$

Dual (via time-inversion of adjoint)

$$\begin{split} E_{\widetilde{\sigma}}^{\top} \dot{z} &= A_{\widetilde{\sigma}}^{\top} z + C_{\widetilde{\sigma}}^{\top} u_d + (\mathscr{T}_{T}(G[\cdot])^{\top} - \frac{\mathrm{d}}{\mathrm{ds}} E_{\widetilde{\sigma}}^{\top}) z \\ y &= B_{\widetilde{\sigma}}^{\top} x \end{split}$$

where, for the switching times t_i of σ , $G[\cdot] := \sum_i G_{t_i} \delta_{t_i}$

Theorem (Dual of dual)

If σ is constant outside of (0, T), then the **T**-dual of the **T**-dual is the original switched DAE with impacts.

Crucial ingredients

- Suitable adjointness condition
- Time-inversion
- Extension of system class: Switched DAEs with impacts

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

A counter example	Adjoint systems for switched DAEs	Dual systems for switched DAEs	Observability, Determinability, Controllability, Reachability
0000	000000	0000	0000

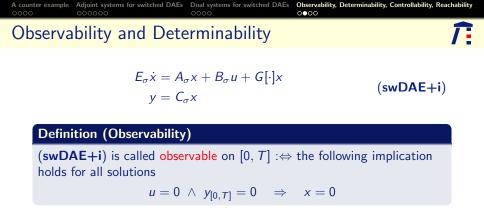
1 A counter example

2 Adjoint systems for switched DAEs

3 Dual systems for switched DAEs

Observability, Determinability, Controllability, Reachability

Stephan Trenn



Definition (Determinability)

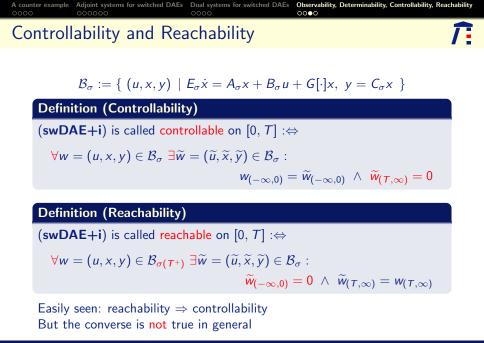
(swDAE+i) is called determinable on [0, T] : \Leftrightarrow the following implication holds for all solutions

$$u = 0 \land y_{[0,T]} = 0 \Rightarrow x_{(T,\infty)} = 0$$

Obviously, observability \Rightarrow determinability But the converse is **not** true in general

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany



Stephan Trenn

Main Duality result

Theorem

For switched DAE with impacts it holds that

Proof is based on some recent observability/determinability (Tanwani & T. '12) and controllability/reachability characterizations (Ruppert, Küsters & T. '15) for switched DAEs

Stephan Trenn