Funnel synchronization for multi agent systems

Stephan Trenn joint work with Hyungbo Shim (Seoul National University)

Technomathematics group, University of Kaiserslautern, Germany

Research seminar, University of Groningen, Netherlands, 05.11.2015

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
●000	00	0000000	000000
Inhalt			<u>Î</u>

Synchronization of heterogenous agents

2 High-gain and funnel control

3 Simulations

4 Weakly centralized Funnel synchronization

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Problem statement			f :

Given

• *N* Agents with individual scalar dynamics:

 $\dot{x}_i = f_i(t, x_i) + u_i$

- undirected connected coupling-graph G = (V, E)
- agents know average of neighbor states

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
A "high-gain" result			<i>Î</i> :

Let
$$\mathcal{N}_i := \{ j \in V \mid (j, i) \in E \}$$
 and $d_i := |\mathcal{N}_i|$.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j) = -k d_i (x_i - \overline{x}_i)$$

Theorem (Practical synchronization, Kim et al. 2013)

Assumptions: G connected, $(t, a) \mapsto f_i(t, a)$ bounded in t and global Lipschitz in a, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \ge K$: Diffusive coupling results in

$$\limsup_{t\to\infty}|x_i(t)-x_j(t)|<\varepsilon\quad\forall i,j\in V$$

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 00000000	Weakly centralized Funnel synchronization
Remarks on high-gain r	esult		<i>Î</i> :

Common trajectory

It even holds that

 $\limsup_{t\to\infty}|x_i(t)-s(t)|<\varepsilon/2,$

where $s(\cdot)$ is the solution of

$$\dot{s}(t) = rac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad \qquad s(0) = rac{1}{N} \sum_{i=1}^{N} x_i.$$

Independent of coupling structure and amplification k.

Error feedback

With $e_i := x_i - \overline{x}_i$ diffusive coupling has the form

 $u_i = -k_i e_i$

Attention: $e_i \neq x_i - s$, in particular, agents do not know "limit trajectory" $t \mapsto s(t)$

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Inhalt			<u>,</u>

1 Synchronization of heterogenous agents

2 High-gain and funnel control

3 Simulations

Weakly centralized Funnel synchronization

Stephan Trenn

Theorem (Practical tracking, Ilchmann et al. 2002)

Funnel Control

$$k(t) = \frac{1}{\varphi(t) - |e(t)|}$$

works.

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control ○●	Simulations	Weakly centralized Funnel synchronization
Funnel synchronization			<u> </u>

Reminder diffusive coupling: $u_i = -k_i e_i$ with $e_i = x_i - \overline{x}_i$.

Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) e_i(t)$$
 mit $k_i(t) = \frac{1}{\varphi(t) - |e_i(t)|}$

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
0000	00	0000000	000000
Content			î :

1 Synchronization of heterogenous agents

2 High-gain and funnel control

3 Simulations

Weakly centralized Funnel synchronization

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations •0000000	Weakly centralized Funnel synchronization
Example			<i>Î</i> :

Simulations in the following for N = 5 agents with dynamics

 $f_i(t, x_i) = (-1 + \delta_i)x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$

with randomly chosen parameters δ_i , m_i^1 , $m_i^1 \in \mathbb{R}$ and θ_i^1 , $\theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Simulation with con	stant <i>k</i>		<i>Î</i> :

 $u_i = -k e_i$ with k = 10

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 0000000	Weakly centralized Funnel synchronization
Funnel synchronization			<u> </u>

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Observations for funnel	synchronization from	n simulations	f :

Funnel synchronization seems to work

- errors remain within funnel
- practical synchronizations is achieved
- limit trajectory does not coincide with solution $s(\cdot)$ of

$$\dot{s}(t) = rac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad s(0) = rac{1}{N} \sum_{i=1}^{N} x_i$$

What determines the new limiting trajectory?

- Coupling graph?
- Funnel shape?
- Gain function?

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 00000000	Weakly centralized Funnel synchronization
Funnel synchronization.	directed graph		î :

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 00000000	Weakly centralized Funnel synchronization
Funnel synchronization,	complete graph		<u>Î</u>

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 0000000	Weakly centralized Funnel synchronization
Funnel synchronization	with higger funnel		

55

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronizat	tion
Content			Ĩ	•

1 Synchronization of heterogenous agents

2 High-gain and funnel control

3 Simulations

For fully decentralized Funnel synchronization

$$u_i(t) = -k_i(t)e_i(t)$$
 mit $k_i(t) = rac{1}{arphi(t) - |e_i(t)|}$

no theoretical results available yet.

Weakly centralized Funnel synchronization

Analogously as for diffusive coupling, all agents use the same gain:

$$u_i(t) = -k_{\max}(t) d_i e_i(t)$$
 with $k_{\max}(t) := \max_{i \in V} \frac{1}{\varphi(t) - |e_i(t)|}$

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
First theoretical result			<u>Î</u>

Theorem

Assumption:

- No "finite escape time" of x_i
- The graph is connected, undirected and d-regular with

$$d>\frac{N}{2}-1$$

• Funnel boundary $\varphi : [0,\infty) \to [\varphi,\overline{\varphi}]$ is differentiable, non-increasing and

$$|e_i(0)| < \varphi(0), \quad \forall i = 1, 2, \dots, N.$$

Then weakly centralized funnel synchronization works.

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Key arguments of the p	roof		<i>Î</i> :

Error dynamics for $e_1 := x_1 - \overline{x}_1$:

$$egin{aligned} \dot{e}_1(t) &= f_1(t,x_1) - k_{\max}(t) d_1 e_1(t) - \dot{\overline{x}}_1(t) \ &= ilde{f}_1(t,x) - k_{\max}(t) d_1 e_1(t) + rac{1}{d_1} \sum_{j \in \mathcal{N}_1} k_{\max}(t) d_j e_j(t) \end{aligned}$$

We need implication

 $arphi(t) - |e_1(t)| \text{ small } \Rightarrow \dot{e}_1(t) \text{ large (with opposite sign as } e_1(t))$ Because $k_{\max}(t) \ge \frac{1}{\varphi(t) - |e_1(t)|}$ we indeed have $\varphi(t) - |e_1(t)| \text{ small } \Rightarrow k_{\max}(t) \text{ large}$

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Key arguments of the p	proof		<i>Î</i> :

d-regularity assumption

$$\dot{e}_1(t) = ilde{f}_1(t,x) - k_{\mathsf{max}}(t) \left(d \ e_1(t) - \sum_{j \in \mathcal{N}_i} e_j(t)
ight)$$

Consequence of property of the Laplacian matrix:

$$\sum_{j\in\mathcal{N}_i}e_j=-e_1-\sum_{j
eq\mathcal{N}_j\cup\{1\}}e_j$$

with

 $|\mathcal{N}_j \cup \{1\}| = N - d - 1$

Hence, invoking $e_1(t) \ge e_j(t)$ for all $j \in V$,

$$\dot{e}_1(t)\leq \widetilde{f}_1(t,x)-k_{\max}(t)(2d-N+2)e_1(t).$$

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Summary			<i>Î</i> :

Combining diffusive coupling with funnel control leads to funnel synchronization

- local error feedback
- time-varying gain
- guaranteed transient behavior
- simulations look promising
- theoretical proof for weakly centralized funnel synchronization

Open questions

- limit trajectory
- weakly centralized case: non-regular graph or d small
- decentralized case