Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany joint work with Hyungbo Shim (Seoul National University, Korea)

54th IEEE Conference on Decision and Control, CDC 2015, Osaka, Japan Wednesday, 16th December 2015, WeA07.6, 11:40

Synchronization of heterogenous agents ●○○	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Contents			<i>Î</i> .

2 High-gain and funnel control

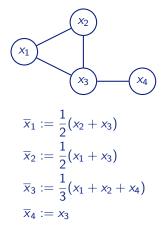
3 Simulations

4 Weakly centralized Funnel synchronization

Synchronization of heterogenous agents ○●○	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Problem statement			î :

Given

• *N* agents with individual scalar dynamics:


 $\dot{x}_i = f_i(t, x_i) + u_i$

- undirected connected coupling-graph G = (V, E)
- agents know average of neighbor states

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$

Stephan Trenn

Synchronization of heterogenous agents ○○●	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
A "high-gain" result			<i>Î</i> :

Let
$$\mathcal{N}_i := \{ j \in V \mid (j, i) \in E \}$$
 and $d_i := |\mathcal{N}_i|$.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j) = -kd_i(x_i - \overline{x}_i)$$

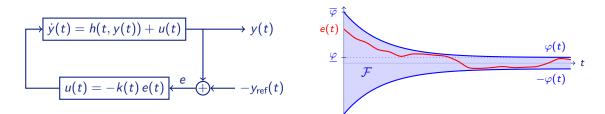
Theorem (Practical synchronization, Kim et al. 2013)

Assumptions: G connected, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \geq K$: Diffusive coupling results in

$$\limsup_{t\to\infty}|x_i(t)-x_j(t)|<\varepsilon\quad\forall i,j\in V$$


Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Contents			Î.

2 High-gain and funnel control

3 Simulations

Weakly centralized Funnel synchronization

Theorem (Practical tracking, Ilchmann et al. 2002)

Funnel Control

$$k(t) = \frac{1}{\varphi(t) - |e(t)|}$$

works, in particular, errors remains within funnel for all times.

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control ○●	Simulations	Weakly centralized Funnel synchronization
Funnel synchronization			<i>Î</i> :

Reminder diffusive coupling: $u_i = -k_i e_i$ with $e_i = x_i - \overline{x}_i$.

Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) e_i(t)$$
 with $k_i(t) = \frac{1}{\varphi(t) - |e_i(t)|}$

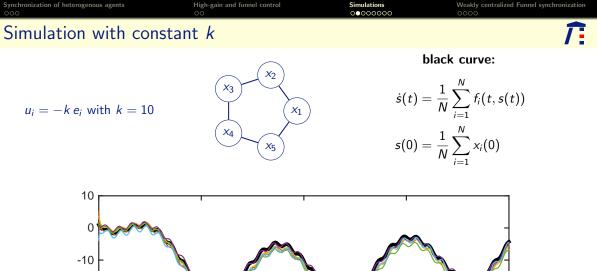
Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Content			<i>Î</i> :

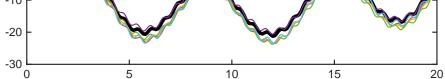
2 High-gain and funnel control

3 Simulations

Weakly centralized Funnel synchronization

Stephan Trenn

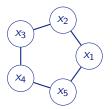

Synchronization of heterogenous agents	High-gain and funnel control	Simulations •0000000	Weakly centralized Funnel synchronization
Example (taken f	rom Kim et al. 2015)		<i>Î</i> :

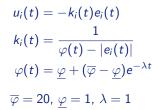

Simulations in the following for N = 5 agents with dynamics

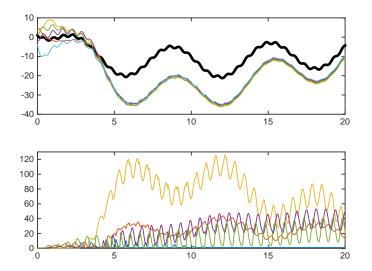
 $f_i(t, x_i) = (-1 + \delta_i)x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$

with randomly chosen parameters δ_i , m_i^1 , $m_i^1 \in \mathbb{R}$ and θ_i^1 , $\theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).





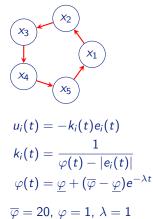

Stephan Trenn

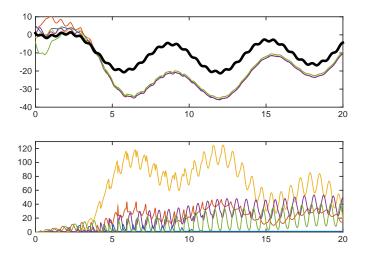
Technomathematics group, University of Kaiserslautern, Germanyjoint work with Hyungbo Shim (Seoul National University, Korea)

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 00000000	Weakly centralized Funnel synchronization
Funnel synchronization			<i>Î</i> :

Synchronization of heterogenous agents	High-gain and funnel control	Simulations 0000000	Weakly centralized Funnel synchronization
Observations for funnel	synchronization	from simulations	f :

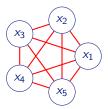
Funnel synchronization seems to work

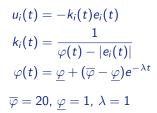

- errors remain within funnel
- practical synchronizations is achieved
- limit trajectory does not coincide with solution $s(\cdot)$ of

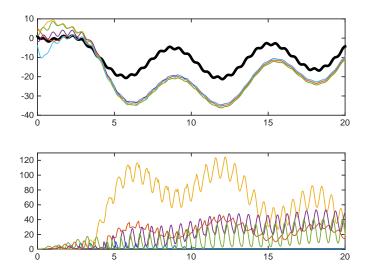

$$\dot{s}(t) = rac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad s(0) = rac{1}{N} \sum_{i=1}^{N} x_i$$

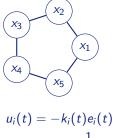
What determines the new limiting trajectory?

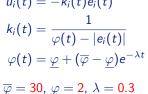
- Coupling graph?
- Funnel shape?
- Gain function?

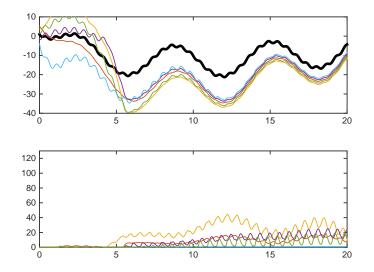


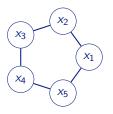


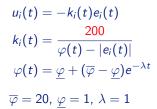


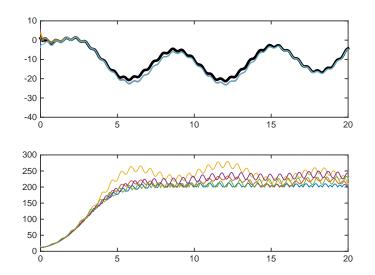

Funnel synchronization, complete graph











Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
000	00	0000000	0000
Content			<i>Î</i> :

2 High-gain and funnel control

3 Simulations

4 Weakly centralized Funnel synchronization

For fully decentralized Funnel synchronization

$$u_i(t) = -k_i(t)e_i(t)$$
 with $k_i(t) = rac{1}{arphi(t) - |e_i(t)|}$

no theoretical results available yet.

Weakly centralized Funnel synchronization

Analogously as for diffusive coupling, all agents use the same gain:

$$u_i(t) = -k_{\max}(t) d_i e_i(t)$$
 with $k_{\max}(t) := \max_{i \in V} \frac{1}{\varphi(t) - |e_i(t)|}$

Stephan Trenn

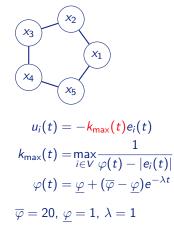
Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
First theoretical result			<i>Î</i> :

Theorem

Assumption:

- No "finite escape time" of x_i
- The graph is connected, undirected and d-regular with

$$d>\frac{N}{2}-1$$


• Funnel boundary $\varphi : [0,\infty) \to [\varphi,\overline{\varphi}]$ is differentiable, non-increasing and

$$|e_i(0)| < \varphi(0), \quad \forall i = 1, 2, \dots, N.$$

Then weakly centralized funnel synchronization works.

Stephan Trenn

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germanyjoint work with Hyungbo Shim (Seoul National University, Korea)

Synchronization of heterogenous agents	High-gain and funnel control	Simulations	Weakly centralized Funnel synchronization
Summary			<i>Î</i> :

Combining diffusive coupling with funnel control leads to funnel synchronization

- local error feedback
- time-varying gain
- guaranteed transient behavior
- simulations look promising
- theoretical proof for weakly centralized funnel synchronization

Open questions

- limit trajectory
- weakly centralized case: non-regular graph or d small
- decentralized case