# Distributional averaging of switched DAEs with two modes 

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany
54th IEEE Conference on Decision and Control, Osaka, Japan
Wednesday, 16th December 2015, WeC10.6, 17:40-18:00

## Contents

(1) Introduction and motivating examples
(2) Distributions
(3) A first distributional averaging result

## Switched differential algebraic equations

Switched DAE:

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

## Major differences to switched ODEs

Due to changing constraints, we see

- Induced state jumps
- Dirac impulses in the state variables

Solution of example (switch at $t=0$ from mode 1 to mode 2 ):




## Application

- Fast switches occurs at
- Pulse width modulation
- „Sliding mode"-control
- In general: fast digital controller
- Simplified analyses
- Stability for sufficiently fast switching
- In general: (approximate) desired behavior via suitable switching


## Periodic switching signal

## Switching signal

$\sigma: \mathbb{R} \rightarrow\{1,2, \ldots, M\}$ has the following properties

- piecewise-constant and periodic with period $p>0$
- duty cycles $d_{1}, d_{2}, \ldots, d_{M} \in[0,1]$ with $d_{1}+d_{2}+\ldots+d_{M}=1$

$\underset{\text { fast switching }}{\sim}$
non-switched averaged system
$x_{a v}$


## Desired approximation result

On any compact time interval it holds that

$$
x_{\sigma, p} \rightarrow x_{\mathrm{av}} \quad \text { as } \quad p \rightarrow 0
$$

Mode 1
$\dot{x}_{1}=0, \quad 0=x_{2}, \quad \dot{x}_{2}=x_{3}$

Mode 2
$\dot{x}_{1}=0, \quad \dot{x}_{2}=x_{1}, \quad \dot{x}_{3}=0$




## Dirac impulses vanish?

## Fact 1

## Fact 2

Impulse-free part of solution converges
$\Rightarrow$ Jump heights converge to zero
Dirac impulse magnitude proportional to jump heights.

## Hope

Dirac impulses don't play a role in the limit of averaging process.
WRONG!

In the example we have: $\quad x_{3}=-\sum_{k=1}^{\infty} d_{2} p x_{1}^{0} \delta_{k p}$.

## Accumulation of Dirac impulses

Magnitude of Dirac impulses are proportional to period $p$, BUT number of Dirac impulses is proportional to $1 / p$

## Relevance in reality?

Consider a differentiable approximation $H^{\varepsilon}$ of the Heaviside step function and its derivative $\delta^{\varepsilon}$ :


## Approximation of $x_{3}$

$$
x_{3}^{\varepsilon}=-\sum_{k=1}^{\infty} d_{2} p x_{1}^{0} \delta_{k p}^{\varepsilon}
$$

## Contents

(1) Introduction and motivating examples
(2) Distributions
(3) A first distributional averaging result

## Distributions: Basic definitions

## Test functions

$$
\mathcal{C}_{0}^{\infty}:=\left\{\begin{array}{l|l}
\varphi: \mathbb{R} \rightarrow \mathbb{R} & \begin{array}{l}
\varphi \text { is smooth with } \\
\text { compact support }
\end{array}
\end{array}\right\}
$$

## Lemma (Generalized functions)

For any locally integrable function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ :

$$
\alpha_{\mathbb{D}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \quad \varphi \mapsto \int_{\mathbb{R}} \alpha \varphi \quad \in \mathbb{D}
$$

## Distributions

$$
\mathbb{D}:=\left\{\begin{array}{l|l}
D: \mathcal{C}^{\infty} \rightarrow \mathbb{R} & \begin{array}{l}
D \text { is linear and } \\
\text { continuous }
\end{array}
\end{array}\right\}
$$

## Lemma (Dirac impulse)

For any $t_{0} \in \mathbb{R}$ we have

$$
\delta_{t_{0}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \quad \varphi \mapsto \varphi\left(t_{0}\right) \quad \in \mathbb{D}
$$

## Definition (Piecewise-smooth distributions)

$$
\mathbb{D}_{\mathrm{pwC}} \mathrm{C}^{\infty}:=\left\{\begin{array}{l|l}
D=D^{f}+D[\cdot] \in \mathbb{D} & \begin{array}{l}
D_{f}=\alpha_{\mathbb{D}}, \alpha \in \mathcal{C}_{\mathrm{pw}}^{\infty}, \\
D[\cdot]=\sum_{t \in T} D_{t}, T \text { is discrete, } D_{t} \in \operatorname{span}\left\{\delta_{t}, \delta_{t}^{\prime}, \delta_{t}^{\prime \prime}, \ldots\right\}
\end{array}
\end{array}\right\}
$$

## Convergence of distributions

## Definition (Convergence of distributions)

$$
D_{n} \rightarrow_{\mathbb{D}} D \text { as } n \rightarrow \infty \quad: \Leftrightarrow \quad \forall \varphi \in \mathcal{C}_{0}^{\infty}: D_{n}(\varphi) \rightarrow_{\mathbb{R}} D(\varphi) \text { as } n \rightarrow \infty
$$

Recall example: $\quad x_{3}=-\sum_{k=1}^{\infty} d_{2} p x_{0}^{1} \delta_{k p}$, let $\varphi \in \mathcal{C}_{0}^{\infty}$ with $\operatorname{supp} \varphi \in[0, T]$ then

$$
\begin{aligned}
x_{3}(\varphi) & =-\sum_{k=1}^{\infty} d_{2} p x_{0}^{1} \delta_{k p}(\varphi) \\
& =-d_{2} x_{0}^{1} \sum_{k=1}^{\lfloor T / p\rfloor} p \varphi(k p) \\
& \rightarrow-d_{2} x_{0}^{1} \int_{0}^{T} \varphi \\
& =\left(-d_{2} x_{0}^{1}\right)_{\mathbb{D}}(\varphi)
\end{aligned}
$$

Hence

$$
x_{3} \rightarrow_{\mathbb{D}}-d_{2} x_{0}^{1}
$$

## Contents

(1) Introduction and motivating examples
(2) Distributions
(3) A first distributional averaging result

## Some DAE notation

Theorem (Quasi-Weierstrass form, Weierstrass 1868)
$(E, A)$ regular $: \Leftrightarrow \operatorname{det}(s E-A) \not \equiv 0 \quad \Leftrightarrow \quad \exists S, T$ invertible:

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & 1
\end{array}\right]\right), \quad N \text { nilpotent }
$$

Can easily obtained via Wong sequences (Berger, Ilchmann \& T. 2012)

## Definition (Consistency projector)

$$
\Pi:=T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] T^{-1}
$$

Definition ( $A^{\text {diff }}$ and $E^{\text {imp }}$ )

$$
A^{\text {diff }}:=T\left[\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right] T^{-1}, \quad E^{\text {imp }}:=T\left[\begin{array}{ll}
0 & 0 \\
0 & N
\end{array}\right] T^{-1}
$$

## Averaging result

$$
\begin{equation*}
E_{\sigma} \dot{x}=A_{\sigma} x, \quad x\left(0^{-}\right)=x_{0} \tag{swDAE}
\end{equation*}
$$

In the following we consider (swDAE) with two modes and switching period $p>0$.

## Theorem (Averaging result of impulse-free part, IAnNELLI, Pedicini, T. \& VAsca 2013)

Consider (swDAE) with regular matrix pairs $\left(E_{1}, A_{1}\right)$ and $\left(E_{2}, A_{2}\right)$. Assume

$$
\Pi_{1} \Pi_{2}=\Pi_{2} \Pi_{1}=: \Pi_{\cap}
$$

and let the averaged system be given as

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap x_{\mathrm{av}}}, \quad, x_{\mathrm{av}}(0)=\Pi_{\cap x_{0}}
$$

where $A_{\mathrm{av}}^{\text {diff }}=d_{1} A_{1}^{\text {diff }}+d_{2} A_{2}^{\text {diff. }}$. Then

$$
x-x[\cdot] \rightarrow x_{\mathrm{av}} \quad \text { uniformly on any compact interval as } p \rightarrow 0 .
$$

## Averaging result

$$
\begin{equation*}
E_{\sigma} \dot{x}=A_{\sigma} x, \quad x\left(0^{-}\right)=x_{0} \tag{swDAE}
\end{equation*}
$$

In the following we consider (swDAE) with two modes and switching period $p>0$.

## Theorem (Distributional averaging)

Consider (swDAE) with regular matrix pairs $\left(E_{1}, A_{1}\right)$ and $\left(E_{2}, A_{2}\right)$. Assume

$$
\Pi_{1} \Pi_{2}=\Pi_{2} \Pi_{1}=: \Pi_{\cap}
$$

and let the averaged system be given as

$$
\dot{x}_{\mathrm{av}}=\Pi_{\cap} A_{\mathrm{av}}^{\text {diff }} \Pi_{\cap x_{\mathrm{av}}}, \quad, x_{\mathrm{av}}(0)=\Pi_{\cap x_{0}}
$$

where $A_{\mathrm{av}}^{\text {diff }}=d_{1} A_{1}^{\text {diff }}+d_{2} A_{2}^{\text {diff. }}$. Then

$$
x \rightarrow_{\mathbb{D}}\left(I-E_{\mathrm{av}}^{\mathrm{imp} p}\right) x_{\mathrm{av} \mathbb{D}} \quad \text { on any compact interval as } p \rightarrow 0,
$$

where $E_{\mathrm{av}}^{\text {imp }}:=\sum_{i=0}^{n-2}\left(d_{1}\left(E_{2}^{\text {imp }}\right)^{i+1} A_{1}^{\text {diff }}+d_{2}\left(E_{1}^{\text {imp }}\right)^{i+1} A_{2}^{\text {diff }}\right)\left(A_{\mathrm{av}}^{\text {diff }}\right)^{i}$.

$$
E_{\sigma} \dot{x}=A_{\sigma} x \quad \dot{x}_{\mathrm{av}}=A_{\mathrm{av}} x_{\mathrm{av}} \quad x \rightarrow_{\mathbb{D}}\left(I-E_{\mathrm{av}}^{\mathrm{imp}}\right) x_{\mathrm{av}}
$$

- First result on averaging for distributional solutions
- Dirac impulses vanish in the limit but cannot be neglected!
- Convergence towards a smooth trajectory (without jumps and Dirac impulses)
- Difference from impulse-free limit
- Practical relevance illustrated by considering approximations of Dirac impulses
- Future challenges:
- Generalization to more than two modes (not trivial!)
- Weakening of commutativity assumption of consistency projectors
- Consideration of inhomogeneous switched DAEs

