## Distributional averaging of switched DAEs with two modes

#### Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

54th IEEE Conference on Decision and Control, Osaka, Japan Wednesday, 16th December 2015, WeC10.6, 17:40-18:00



Contents



1 Introduction and motivating examples



3 A first distributional averaging result

Stephan Trenn

Distributional averaging of switched DAEs with two modes

Technomathematics group, University of Kaiserslautern, Germany



Stephan Trenn



- Fast switches occurs at
  - Pulse width modulation
  - "Sliding mode"-control
  - In general: fast digital controller
- Simplified analyses
  - Stability for sufficiently fast switching
  - In general: (approximate) desired behavior via suitable switching

Stephan Trenn

# **T**

## Periodic switching signal

### Switching signal

- $\sigma:\mathbb{R} \to \{1,2,\ldots,M\}$  has the following properties
  - piecewise-constant and periodic with period p > 0
  - duty cycles  $d_1, d_2, \ldots, d_M \in [0,1]$  with  $d_1 + d_2 + \ldots + d_M = 1$



#### Desired approximation result

On any compact time interval it holds that

$$x_{\sigma,p} 
ightarrow x_{\mathsf{av}}$$
 as  $p 
ightarrow 0$ 

Stephan Trenn



Distributions

#### Stephan Trenn

Introduction and motivating examples

000000

Technomathematics group, University of Kaiserslautern, Germany

A first distributional averaging result

| ntroduction | and | motivating | examples |  |
|-------------|-----|------------|----------|--|
| 000000      |     |            |          |  |

Dirac impulses vanish?

Distributions

# **Î**

#### Fact 1

Impulse-free part of solution converges  $\Rightarrow$  Jump heights converge to zero

#### Fact 2

Dirac impulse magnitude proportional to jump heights.

#### Hope

Dirac impulses don't play a role in the limit of averaging process.

### WRONG!

In the example we have:  $x_3 = -\sum_{k=1}^{\infty} d_2 p x_1^0 \delta_{kp}$ .

#### Accumulation of Dirac impulses

Magnitude of Dirac impulses are proportional to period p, BUT number of Dirac impulses is proportional to 1/p

Stephan Trenn



Consider a differentiable approximation  $H^{\varepsilon}$  of the Heaviside step function and its derivative  $\delta^{\varepsilon}$ :



#### Stephan Trenn

Contents



1 Introduction and motivating examples



3 A first distributional averaging result

Stephan Trenn

Distributional averaging of switched DAEs with two modes

Technomathematics group, University of Kaiserslautern, Germany

Distributions



Distributions: Basic definitions

| Test functions                                                                                                                                                                                                   | Distributions                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}_0^{\infty} := \left\{ \begin{array}{c} \varphi : \mathbb{R} \to \mathbb{R} \\ \end{array} \middle  \begin{array}{c} \varphi \text{ is smooth with} \\ \text{ compact support} \end{array} \right\}$ | $\mathbb{D} := \left\{ \begin{array}{c c} D : \mathcal{C}^{\infty} \to \mathbb{R} \end{array} \middle  \begin{array}{c} D \text{ is linear and} \\ \text{continuous} \end{array} \right\}$ |
|                                                                                                                                                                                                                  |                                                                                                                                                                                            |
| Lemma (Generalized functions)                                                                                                                                                                                    | Lemma (Dirac impulse)                                                                                                                                                                      |
| <b>Lemma (Generalized functions)</b><br>For any locally integrable function $\alpha : \mathbb{R} \to \mathbb{R}$ :                                                                                               | Lemma (Dirac impulse)For any $t_0 \in \mathbb{R}$ we have                                                                                                                                  |

Definition (Piecewise-smooth distributions)

$$\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} := \left\{ \begin{array}{c} \mathbf{D} = \mathbf{D}^{f} + \mathbf{D}[\cdot] \in \mathbb{D} \\ D_{f} = \alpha_{\mathbb{D}}, \ \alpha \in \mathcal{C}_{\mathsf{pw}}^{\infty}, \\ D[\cdot] = \sum_{t \in T} D_{t}, \ T \text{ is discrete, } D_{t} \in \mathsf{span}\{\delta_{t}, \delta_{t}', \delta_{t}'', \ldots\} \end{array} \right\}$$

Stephan Trenn

| Introduction and motivating examples | Distributions<br>O | A first distributional averaging result |
|--------------------------------------|--------------------|-----------------------------------------|
| Convergence of distributions         |                    | <i>Î</i> :                              |

### Definition (Convergence of distributions)

$$D_n o_{\mathbb{D}} D$$
 as  $n o \infty$  : $\Leftrightarrow$   $\forall \varphi \in \mathcal{C}_0^\infty : \ D_n(\varphi) o_{\mathbb{R}} D(\varphi)$  as  $n o \infty$ 

Recall example:  $x_3 = -\sum_{k=1}^{\infty} d_2 p x_0^1 \delta_{kp}$ , let  $\varphi \in \mathcal{C}_0^{\infty}$  with supp  $\varphi \in [0, T]$  then

$$\begin{aligned} x_3(\boldsymbol{\varphi}) &= -\sum_{k=1}^{\infty} d_2 \rho x_0^1 \delta_{k\rho}(\boldsymbol{\varphi}) \\ &= -d_2 x_0^1 \sum_{k=1}^{\lfloor T/\rho \rfloor} p \boldsymbol{\varphi}(k\rho) \\ &\to -d_2 x_0^1 \int_0^T \boldsymbol{\varphi} \\ &= (-d_2 x_0^1)_{\mathbb{D}}(\boldsymbol{\varphi}) \end{aligned}$$

Hence 
$$x_3 \rightarrow_{\mathbb{D}} -d_2 x_0^1$$



Contents







Stephan Trenn

| Introduction and motivating examples | Distributions | A first distributional averaging result<br>●○○ |
|--------------------------------------|---------------|------------------------------------------------|
| Some DAE notation                    |               | Î.                                             |

**Theorem (Quasi-Weierstrass form, WEIERSTRASS 1868)** 

(E, A) regular : $\Leftrightarrow$  det $(sE - A) \neq 0 \Leftrightarrow \exists S, T$  invertible:

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \end{pmatrix}, \quad N \text{ nilpotent}$$

Can easily obtained via Wong sequences (BERGER, ILCHMANN & T. 2012)

**Definition (Consistency projector)** 

$$\mathbf{\Pi} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$$

**Definition (** $A^{\text{diff}}$  and  $E^{\text{imp}}$ **)** 

$$\boldsymbol{A}^{\mathsf{diff}} := \boldsymbol{T} \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{T}^{-1}, \quad \boldsymbol{E}^{\mathsf{imp}} := \boldsymbol{T} \begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix} \boldsymbol{T}^{-1}$$

Stephan Trenn

| Introduction and motivating examples | Distributions<br>00 | A first distributional averaging result<br>○●○ |
|--------------------------------------|---------------------|------------------------------------------------|
| Averaging result                     |                     | <i>Î</i> :                                     |

$$E_{\sigma}\dot{x} = A_{\sigma}x, \quad x(0^{-}) = x_0$$
 (swDAE)

In the following we consider (swDAE) with two modes and switching period p > 0.

Theorem (Averaging result of impulse-free part, IANNELLI, PEDICINI, T. & VASCA 2013)

Consider (swDAE) with regular matrix pairs  $(E_1, A_1)$  and  $(E_2, A_2)$ . Assume

 $\Pi_1\Pi_2=\Pi_2\Pi_1=:\Pi_\cap$ 

and let the averaged system be given as

$$\dot{x}_{\mathsf{av}} = \Pi_{\cap} \mathcal{A}^{\mathsf{diff}}_{\mathsf{av}} \Pi_{\cap} x_{\mathsf{av}}, \quad , x_{\mathsf{av}}(0) = \Pi_{\cap} x_{\mathsf{0}}$$

where  $A_{av}^{diff} = d_1 A_1^{diff} + d_2 A_2^{diff}$ . Then

 $x - x[\cdot] \rightarrow x_{av}$  uniformly on any compact interval as  $p \rightarrow 0$ .

Stephan Trenn

| Introduction and motivating examples | Distributions<br>00 | A first distributional averaging result<br>$\bigcirc \bigcirc \bigcirc$ |
|--------------------------------------|---------------------|-------------------------------------------------------------------------|
| Averaging result                     |                     | <i>Î</i> :                                                              |

$$E_{\sigma}\dot{x} = A_{\sigma}x, \quad x(0^{-}) = x_0$$
 (swDAE)

In the following we consider (swDAE) with two modes and switching period p > 0.

Theorem (Distributional averaging)

Consider (swDAE) with regular matrix pairs  $(E_1, A_1)$  and  $(E_2, A_2)$ . Assume

 $\Pi_1\Pi_2=\Pi_2\Pi_1=:\Pi_\cap$ 

and let the averaged system be given as

$$\dot{x}_{\mathsf{av}} = \Pi_{\cap} \mathcal{A}^{\mathsf{diff}}_{\mathsf{av}} \Pi_{\cap} x_{\mathsf{av}}, \quad , x_{\mathsf{av}}(0) = \Pi_{\cap} x_{\mathsf{0}}$$

where  $A_{av}^{diff} = d_1 A_1^{diff} + d_2 A_2^{diff}$ . Then

 $\begin{array}{l} \mathbf{x} \rightarrow_{\mathbb{D}} (\mathbf{I} - \mathbf{E}_{\mathsf{av}}^{\mathsf{imp}}) \mathbf{x}_{\mathsf{av}\mathbb{D}} \quad \text{on any compact interval as } p \rightarrow 0, \\ \\ \text{where } \mathbf{E}_{\mathsf{av}}^{\mathsf{imp}} := \sum_{i=0}^{n-2} (d_1(E_2^{\mathsf{imp}})^{i+1} A_1^{\mathsf{diff}} + d_2(E_1^{\mathsf{imp}})^{i+1} A_2^{\mathsf{diff}}) (A_{\mathsf{av}}^{\mathsf{diff}})^i. \end{array}$ 

Stephan Trenn

| Introduction and motivating examples | OO | A first distributional averaging result<br>○○● |
|--------------------------------------|----|------------------------------------------------|
| Summary                              |    | <i>Î</i> :                                     |
|                                      |    |                                                |

$$E_{\sigma}\dot{x} = A_{\sigma}x$$
 $\dot{x}_{av} = A_{av}x_{av}$  $x \to_{\mathbb{D}} (I - E_{av}^{imp})x_{av}$ 

- First result on averaging for distributional solutions
- Dirac impulses vanish in the limit but cannot be neglected!
  - Convergence towards a smooth trajectory (without jumps and Dirac impulses)
  - Difference from impulse-free limit
- Practical relevance illustrated by considering approximations of Dirac impulses
- Future challenges:
  - Generalization to more than two modes (not trivial!)
  - Weakening of commutativity assumption of consistency projectors
  - Consideration of inhomogeneous switched DAEs