Edge-wise funnel synchronization

Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

2017 GAMM Annual Meeting, Weimar, Germany Tuesday, 7th March 2017

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Contents			<i>Î</i> :

2 High-gain and funnel control

3 Funnel synchronization

4 Edgewise Funnel synchronization

Stephan Trenn

Synchronization of heterogenous agents ○●○○	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Problem statement			î:

Given

• *N* agents with individual scalar dynamics:

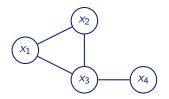
 $\dot{x}_i = f_i(t, x_i) + u_i$

- undirected connected coupling-graph G = (V, E)
- local feedback

Desired

Control design for practical synchronization

 $x_1 \approx x_2 \approx \ldots \approx x_n$



 $u_1 = F_1(x_1, x_2, x_3)$ $u_2 = F_2(x_2, x_1, x_3)$ $u_3 = F_3(x_3, x_1, x_2)$ $u_4 = F_4(x_4, x_3)$

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
A "high-gain" result			<i>Î</i> :

Let $\mathcal{N}_i := \{ j \in V \mid (j, i) \in E \}$ and $d_i := |\mathcal{N}_i|$ and \mathcal{L} be the Laplacian of G.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j)$$
 or, equivalently, $u = -k \mathcal{L} x$

Theorem (Practical synchronization, KIM et al. 2013)

Assumptions: G connected, all solutions of average dynamics

$$\dot{s}(t) = rac{1}{N}\sum_{i=1}^{N}f_i(t,s(t))$$

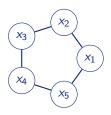
remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \geq K$: Diffusive coupling results in

$$\limsup_{t\to\infty}|x_i(t)-x_j(t)|<\varepsilon\quad\forall i,j\in V$$

High-gain and funnel control

Funnel synchronization

Example (taken from KIM et al. 2015)



Simulations in the following for N = 5 agents with dynamics

 $f_i(t, x_i) = (-1 + \frac{\delta_i}{\lambda_i})x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$

with randomly chosen parameters δ_i , m_i^1 , $m_i^1 \in \mathbb{R}$ and θ_i^1 , $\theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

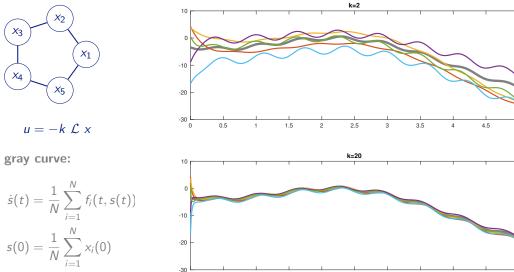
Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Example (taken from I	KIM et al. 2015)		î

Example (taken from KIM et al. 2015)

5

5



1

1.5

2

2.5

3

3.5

0.5

0

Stephan Trenn

4

4.5

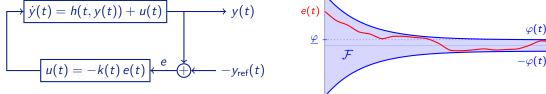
Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Contents			î :

2 High-gain and funnel control

3 Funnel synchronization

4 Edgewise Funnel synchronization

Stephan Trenn



Theorem (Practical tracking, ILCHMANN et al. 2002)

Funnel Control

$$k(t) = \frac{1}{\varphi(t) - |e(t)|}$$

works, in particular, errors remains within funnel for all times.

Basic idea for funnel synchronization

$$u = -k \mathcal{L} \times \longrightarrow u = -k(t) \mathcal{L} \times$$

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Content			<i>Î</i> :

2 High-gain and funnel control

3 Funnel synchronization

4 Edgewise Funnel synchronization

Stephan Trenn

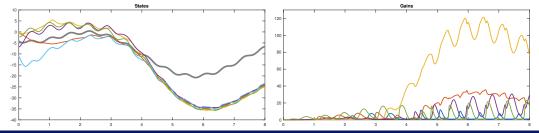
Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
0000	0	000	00000
A survey of the order Carry			
Approach from SHIM	A = A = 2015		

Local error

$$u_{i} = -k \sum_{j:(i,j)\in E} x_{i} - x_{j} = -k \left(d_{i}x_{i} - \sum_{j:(i,j)\in E} x_{j} \right) =: -k d_{i} \left(x_{i} - \overline{x}_{i} \right) =: -k_{i} e_{i}$$

Funnel synchronization feedback rule

$$u_i(t) = -k_i(t)e_i(t)$$
 with $k_i(t) = rac{1}{arphi(t) - |e_i(t)|}$



Stephan Trenn

Technomathematics group, University of Kaiserslautern, Germany

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization ○●○	Edgewise Funnel synchronization
Unpredictable limit t	raiectory		Î

Problems

Synchronization occurs as desired, but

- No proof available yet
- Non-predictable limit trajectory

Laplacian feedback

Diffusive coupling

Non-Laplacian feedback

Funnel synchronization

$$u = -k \mathcal{L} x$$

has Laplacian feedback matrix $k\mathcal{L}$

 $u = -K(t)\mathcal{L}x = -\begin{bmatrix} k_1(t) & & \\ & k_2(t) & \\ & & \ddots & \\ & & & k_N(t) \end{bmatrix} \mathcal{L}x$

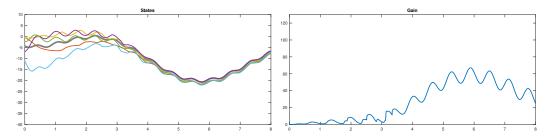
has non-Laplacian feedback matrix $K(t)\mathcal{L}$, in particular $[1, 1, \dots, 1]^{\top}$ is not a left-eigenvector of $K(t)\mathcal{L}$.

Restoring Laplacian feedback structure

Weakly decentralized funnel synchronization

$$u = -k_{\max}(t)\mathcal{L}x$$
 with $k_{\max}(t) := \max_{i} k_i(t)$

again has (time-varying) Laplacian feedback matrix $-k_{max}(t)\mathcal{L}$.



Problem

Each agent needs knowledge of gains of all other agents!

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Content			<u>î</u>

2 High-gain and funnel control

3 Funnel synchronization

4 Edgewise Funnel synchronization

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Diffusive coupling rev	visited		î :

"'Ъ

Diffusive coupling for weighted graph

$$u_i = -k \sum_{i}^{N} \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j)$$

where $\alpha_{ii} = \alpha_{ii} \in \{0, 1\}$ is the weight of edge (i, j)

Conjecture

If $k_{ii} = k_{ii}$ are all sufficiently large, then practical synchronization occurs with predictable limit trajectory s.

Proof technique from KIM et al. 2013 should still work in this setup.

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Adjusted proof techn	ique of KIM et al	2013	f

Aujusteu proor technique o I TIM EL al. 2013

Consider coordinate transformation $\begin{pmatrix} \xi \\ r \end{pmatrix} = \frac{1}{N} \begin{bmatrix} 1_N^{\dagger} \\ R(k_{ij}) \end{bmatrix} x$, then closed loop has the form

$$\dot{\xi} = \frac{1}{N} \mathbf{1}_{N}^{\top} f(t, \mathbf{1}_{N} \xi + Qr)$$
$$\dot{r} = -\mathbf{\Lambda}(\mathbf{k}_{ij}) r + \mathbf{R}(\mathbf{k}_{ij}) f(t, \mathbf{1}_{N} \xi + Qr)$$

Show that $r \to 0$, then $\xi \to s$ where

 $\dot{s} = \frac{1}{N} \mathbf{1}_{N}^{\top} f(t, \mathbf{1}_{N} s)$

Problem

Coordinate transformation depends on k_{ii}

 \rightarrow Approach breaks down when k_{ii} becomes time/state-dependent

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
0000	0	000	00000
Edmonuico Europal au	abranization		†
Edgewise Funnel syr	ICHTOHIZATION		

Diffusive coupling \rightarrow edgewise Funnel synchronization

$$u_i = -\sum_{i}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i}^{N} k_{ij}(t) \cdot \alpha_{ij} \cdot (x_i - x_j)$$

Edgewise error feedback

$$k_{ij}(t) = rac{1}{arphi(t) - |e_{ij}|}, \quad ext{with} \quad e_{ij} := x_i - x_j$$

Properties:

- Decentralized, i.e. u_i only depends on state of neighbors
- Symmetry, $k_{ii} = k_{ii}$
- Laplacian feedback, $u = -\mathcal{L}_{K}(t, x)x$

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
No finite escape time			<i>Î</i> :

Assumption 1

For $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, assume that

$$\dot{lpha} = \max_{\|z\|_2 = \sqrt{2lpha}} z^{\top} f(t, z), \qquad lpha(0) \ge 0,$$

has no finite escape time.

Lemma (SHIM & TRENN 2015, CDC)

Any nonlinear system

 $\dot{x} = f(t, x) - M(t, x)x$

with positive semi-definite M(t, x) where f satisfying Assumption 1 has no finite-escape time (in x).

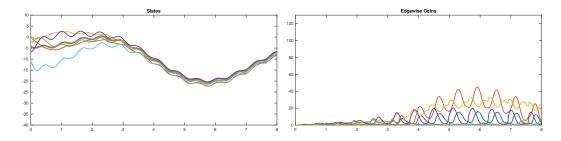
Corollary

Under Assumption 1, edgewise funnel control has no finite escape time (in x).

Stephan Trenn

Synchronization of heterogenous agents	High-gain and funnel control	Funnel synchronization	Edgewise Funnel synchronization
Simulation and Discuss	ion		†

Simulation and Discussion



Discussion

- Synchronization occurs
- Predictable limit trajectory (global consensus)
- Local feedback law
- No proofs available yet
- Restricted to scalar systems so far
- Restricted to undirected graphs so far