IF YOU HAVE ANY QUESTIONS CONCERNING THIS MATERIAL (IN PARTICULAR, SPECIFIC POINTERS TO LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

1 Solution Theory

1.1 Motivation: Modeling of electrical circuits

Basic components:

• Resistors: $v_R(t) = Ri_R(t)$

• Capacitor: $C \frac{d}{dt} v_C(t) = i_C(t)$

• Coil: $L\frac{d}{dt}i_L(t) = v_L(t)$

• Voltage source: $v_S(t) = u(t)$

All components have the same form:

$$\boxed{E\dot{x} = Ax + Bu} \quad E, A \in \mathbb{R}^{\ell \times n}, \ B \in \mathbb{R}^{\ell \times m}$$

• Capacitor:
$$x = \begin{pmatrix} v_C \\ i_C \end{pmatrix}$$
, $E = [C,0]$, $A = [0,1]$, $B = []$

• Voltage source
$$x = \begin{pmatrix} v_C \\ i_C \end{pmatrix}$$
, $E = [0,0]$, $A = [-1,0]$, $B = [1]$

Connecting components: Component equations remain unchanged!

+ Kirchhoffs laws:

$$v_{RC} = v_R, \quad i_{RC} = i_R + i_C, \quad v_R + v_C = 0$$

Results again in $E\dot{x} = Ax + Bu$ with $x = (v_R, i_R, v_C, i_C, v_{RC}, i_{RC})$ and

Altogether: $x = (v_R, i_R, v_C, i_C, v_L, i_L, v_S, i_S)$

1.2 DAEs: What is different to ODEs

Example:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$$

$$\dot{x}_2 = x_1 + f_1 \xrightarrow{\qquad \qquad } x_1 = -f_1 - \dot{f}_2$$

$$0 = x_2 + f_2 \xrightarrow{\qquad } x_2 = -f_2$$

$$0 = f_3$$

no restriction on x_3

Observations:

- For fixed inhomogeneity, initial values cannot be chosen arbitrarily $(x_1(0) = -f_1(0) \dot{f}_2(0), x_2(0) = f_2(0))$
- For fixed inhomogeneity, solution not uniquely determined by initial value $(x_3 \text{ free})$
- Inhomogeneity not arbitrary
 - structural restrictions $(f_3 = 0)$
 - differentiability restrictions (\dot{f}_2 must be well defined)

1.3 Special DAE-cases

a) ODEs:

$$\dot{x} = Ax + f$$

- Initial values: arbitrary
- Solution uniquely determined by f and x(0)
- Inhomogeneity constraints
 - no structural constraints
 - no differentiability constraints

b) nilpotent DAEs:

$$\begin{bmatrix} 0 \\ 1 & \ddots & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix} \dot{x} = x + f$$

$$\Leftrightarrow \quad 0 = x_1 + f_1 \quad \longrightarrow \quad x_1 = -f_1$$

$$\dot{x}_1 = x_2 + f_2 \quad \longrightarrow \quad x_2 = -f_2 - \dot{f}_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\dot{x}_{n-1} = x_n + f_n \quad \longrightarrow \quad x_n = -\sum_{i=1}^n f_i^{(n-i)}$$

In general:

$$N\dot{x} = x + f$$
 with N nilpotent, i.e. $N^n = 0$

$$\stackrel{N\frac{d}{dt}}{\Rightarrow} N^2 \ddot{x} = N\dot{x} + N\dot{f} = x + f + N\dot{f}$$

$$\stackrel{N\frac{d}{dt}}{\Rightarrow} \cdots \stackrel{N\frac{d}{dt}}{\Rightarrow} 0 = N^n x^{(n)} = x + \sum_{i=0}^{n-1} N^i f^{(i)}$$

$$\Rightarrow x = -\sum_{i=0}^{n-1} N^i f^{(i)}$$

is unique solution of $N\dot{x} = x + f$

- Initial values: fixed by inhomogeneity
- Solution uniquely determined by f
- Inhomogeneity constraints:
 - no structural constraints
 - differentiability constraints: $(N^i f)^{(i)}$ needs to be well defined
- c) underdetermined DAEs

$$n-1 \begin{bmatrix} 1 & 0 & & \\ & \ddots & \ddots & \\ & 1 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \end{bmatrix} x + f$$

$$\Leftrightarrow \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_{n-1} \end{pmatrix} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{pmatrix} + f$$

$$\Leftrightarrow ODE = \text{with a divisional "inverty" respectively.}$$

 \Leftrightarrow ODE with additional "input" x_n

- Initial values: arbitrary
- Solution not uniquely determined by x(0) and f
- Inhomogeneity constraints: none

d) overdetermined DAEs

$$n+1 \begin{bmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & \ddots & 0 \\ & & & 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & & \\ 0 & \ddots & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix} x + f$$

$$\Leftrightarrow \underbrace{\begin{bmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}}_{N} \dot{x} = x + \begin{pmatrix} f_{1} \\ \vdots \\ f_{n} \end{pmatrix} \wedge \dot{x}_{n} = f_{n+1}$$

$$\Leftrightarrow x = -\sum_{i=0}^{n-1} N^{i} f^{(i)} \wedge \dot{x}_{n} = -\sum_{i=1}^{n} f_{i}^{n-i+1} \stackrel{!}{=} f_{n+1}$$

$$\Leftrightarrow \sum_{i=1}^{n+1} f_{i}^{(n+1-i)} = 0$$

- Initial valus: fixed by inhomogeneity
- \bullet Solution uniquely determined by f
- Inhomogeneity constraints
 - structural constraint: $\sum_{i=1}^{n+1} f_i^{(n+1-i)} = 0$
 - differentiability constraint: f_i^{n+1-i} needs to be well defined

We will see: There are no other cases!

1.4 Solution behavior, equivalence and normal forms

Solution behavior of $E\dot{x} = Ax + f$

$$\mathfrak{B}_{[E,A,I]} := \left\{ \ (x,f) \ \middle| \ x \in \mathcal{C}^1(\mathbb{R} \to \mathbb{R}^n), \ f : \mathbb{R} \to \mathbb{R}^m, \ E\dot{x} = Ax + f \ \right\}$$

Fact 1: For any invertible matrix $S \in \mathbb{R}^{m \times m}$:

$$(x,f) \in \mathfrak{B}_{[E,A,I]} \Leftrightarrow (x,Sf) \in \mathfrak{B}_{[SE,SA,I]}$$

Fact 2: For coordinate transformation $x=Tz,\,T\in\mathbb{R}^{n\times n}$ invertible:

$$(x,f) \in \mathfrak{B}_{[E,A,I]} \Leftrightarrow (T^{-1}x,f) \in \mathfrak{B}_{[ET,AT,I]}$$

Together:

$$(x,f) \in \mathfrak{B}_{[E,A,I]} \Leftrightarrow (T^{-1},Sf) \in \mathfrak{B}_{[SET,SAT,I]}$$

Definition 1. (E_1,A_1) , (E_2,A_2) are called equivalent $:\Leftrightarrow (E_2,A_2)=(SE_1T,SA_1T)$ short:

$$(E_1,A_1) \cong (E_2,A_2)$$
 or $(E_1,A_1) \stackrel{S,T}{\cong} (E_2,A_2)$

Theorem 1 (Quasi-Kronecker Form). For any $E,A \in \mathbb{R}^{\ell \times m}$, \exists invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:

where (E_U, A_U) consists of underdetermined blocks on the diagonal, N is nilpotent, and (E_O, A_O) consists of overdetermined diagonal bolcks

Example:

$$\left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \cong \left(\begin{bmatrix} \hline & 0 & 1 \\ & 0 & 0 \\ & & & | \end{bmatrix}, \begin{bmatrix} \hline & 1 & 0 \\ & 0 & 1 \\ & & & | \end{bmatrix} \right)$$

Corollary 1. $E\dot{x} = Ax + f$ has solution x for any sufficiently smooth f and each solution x is uniquely determined by x(0) and f

 \Leftrightarrow

$$(E,A) \cong \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), N \text{ nilpotent}$$

(E,A) is then called regular.