IF you have any questions concerning this material (in particular, specific pointers to LITERATURE), PLEASE DON'T HESITATE TO CONTACT ME VIA EMAIL: trenn@mathematik.uni-kl.de

10 Switched DAEs

10.1 Motivation and solutions

Recall example from Lecture 3:

Switch \rightarrow Different DAE models (=modes) depending on (time-varying) position of switch

Switching signal $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$ picks mode number $\sigma(t)$ at each time $t \in \mathbb{R}$:

$$
\begin{aligned}
E_{\sigma(t)} \dot{x}(t) & =A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \\
y(t) & =C_{\sigma(t)} x(t)+D_{\sigma(t)} u(t)
\end{aligned}
$$

or short

$$
\begin{array}{r}
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \\
y=C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{array}
$$

Each mode might have different consistency spaces
\Rightarrow inconsistent initial values at each switch
\Rightarrow distributional solutions

In (swDAE) multiplication of piecewise-constant function with distribution appears.
Lemma 1 (Multiplication of distributions).

- Let $\alpha \in \mathcal{C}^{\infty}$ and $D \in \mathbb{D}$, then $\alpha \cdot D \in \mathbb{D}$ where

$$
(\alpha \cdot D)(\varphi):=D(\alpha \cdot \varphi)
$$

- Let $\alpha=\sum_{i \in \mathbb{Z}} \alpha_{i\left[t_{i}, t_{i+1}\right)} \in \mathcal{C}_{\mathrm{pw}}^{\infty}$ and $D \in \mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}$, then $\alpha \cdot D \in \mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}$ where

$$
\alpha \cdot D:=\sum_{i \in \mathbb{Z}} \alpha_{i} \cdot D_{\left[t_{i}, t_{i+1}\right)}
$$

in particular, $\mathbb{1}_{[0, \infty)} \cdot \delta=\delta$.
Remarks 1.
a) It is not possible to define commutative multiplication $F * G$ neither for general $F, G \in \mathbb{D}$ nor for $F, G \in \mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}(\rightarrow$ Exercise $)$
b) A noncommutative mutliplication $F \cdot G$ for $F, G \in \mathbb{D}_{\mathrm{pw}}{ }^{\infty} \times$ can be defined, in particular,

$$
\delta \cdot \delta=0
$$

(because $\delta \cdot \delta=\mathbb{1}_{[0, \infty)}^{\prime} \cdot \delta=\left(\mathbb{1}_{[0, \infty)} \cdot \delta\right)^{\prime}-\mathbb{1}_{[0, \infty)} \cdot \delta^{\prime}=\delta^{\prime}-\delta^{\prime}=0$)

Corollary 1 (from Lecture 3). Let

$$
\Sigma_{0}:=\left\{\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} \mid \sigma \text { is piecewise constant and }\left.\sigma\right|_{(-\infty, 0)} \text { is constant }\right\}
$$

Consider $(s w D A E)$ with regular $\left(E_{p}, A_{p}\right) \forall p \in\{1, \ldots, N\}$. Then for all $u \in \mathbb{D}_{\mathrm{pw}}^{m} \mathcal{C}^{\infty}$ and all $\sigma \in \Sigma_{0}$ exists solution $x \in \mathbb{D}_{\mathrm{pw} \mathcal{C}}^{n}$ of $(s w D A E)$ and $x(0-)$ uniquely determines x.

10.2 Impulse-freeness

Question: When are all solutions of homogenous (swDAE) $E_{\sigma} \dot{x}=A_{\sigma} x$ impulse free, i.e. $x[t]:=x_{[t, t]}=$ $0 \forall t \in \mathbb{R}$?
(jumps are OK)
Lemma 2 (Sufficient conditions).

- $\left(E_{p}, A_{p}\right)$ all have index one (i.e. $N_{p}=0$ in $Q W F$) $\Rightarrow(s w D A E)$ impulse free
- all consistency spaces of $\left(E_{p}, A_{p}\right)$ coincide (i.e. Wong limits \mathcal{V}_{p}^{*} are identical) $\Rightarrow(s w D A E)$ impulse free

Proof:

- Index-1-case: Consider nilpotent DAE-ITP:

$$
\begin{aligned}
& (N \dot{w})_{[0, \infty)}=w_{[0, \infty)} \\
& \Rightarrow 0=w_{[0, \infty)} \\
& \Rightarrow w[0]=0
\end{aligned}
$$

Hence an inconsistent initial value does not induce Dirac-impulse

- Same consistency space for all modes
\Rightarrow no inconsistent initial values at switch
\Rightarrow no Dirac-impulse
Theorem 1. The switched $D A E E_{\sigma} \dot{x}=A_{\sigma} x$ is impulse free $\forall \sigma \in \Sigma_{0}$

$$
\Leftrightarrow \quad E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0 \quad \forall p, q \in\{1, \ldots, N\}
$$

where $\Pi_{p}:=\Pi_{\left(E_{p}, A_{p}\right)}, p \in\{1, \ldots, N\}$ is the consistency projector.
Proof: It suffices to consider $\sigma=\underset{0}{\substack{2 \\ \underset{0}{\mid}}} t$
i.e. (swDAE) reads as

$$
\begin{equation*}
\left(E_{1} \dot{x}\right)_{(-\infty, 0)}=\left(A_{1} x\right)_{(-\infty, 0)}\left(E_{2} \dot{x}\right)_{[0, \infty)}=\left(A_{2} x\right)_{[0, \infty)} \tag{*}
\end{equation*}
$$

Choose S_{2}, T_{2} invertible such that $\left(S_{2} E_{2} T_{2}, S_{2} A_{2} T_{2}\right)$ is in QWF, then $(*)$ is equivalent to

$$
\left(\widetilde{E}_{1} \dot{z}\right)_{(-\infty, 0)}=\left(\widetilde{A}_{1} z\right)_{(-\infty, 0)}\left(\left[\begin{array}{ll}
I & \\
& N
\end{array}\right] \dot{z}\right)_{[0, \infty)}=\left(\left[\begin{array}{ll}
J & \\
& I
\end{array}\right] z\right)_{[0, \infty)}
$$

where $z=T_{2}^{-1} x$ and $\left(\widetilde{E}_{1}, \widetilde{A}_{1}\right)=\left(S_{2} E_{1} T_{2}, S_{2} A_{1} T_{2}\right)$. Note that $z(0-)=T_{2}^{-1} x(0-) \in T_{2}^{-1} \mathrm{imH}_{1}$. Let $z=\binom{v}{w}$ then $(*)$ is impulse free
\Leftrightarrow ITP for $N \dot{w}=w$ is impulse free for all $w(0-) \in[0, I] T_{2}^{-1} \mathrm{im} \Pi_{1}$.
Since $w[0]=-\sum_{i=0}^{n-2} N^{i+1} w(0-) \delta^{(i)}$ we have

$$
\begin{aligned}
(*) \text { is impulse free } & \Leftrightarrow N^{i+1}[0, I] T_{2}^{-1} \mathrm{im}_{1} \forall i \in\{0,1, \ldots, n-2\} \\
& \Leftrightarrow N[0, I] T_{2}^{-1} \Pi_{1}=0 \\
& \Leftrightarrow\left[\begin{array}{cc}
I & \\
& N
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right] T_{2}^{-1} \Pi_{1}=0 \\
& \Leftrightarrow S_{2}^{-1}\left[\begin{array}{cc}
I & \\
& N
\end{array}\right] T_{2}^{-1} T_{2}\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right] T_{2}^{-1} \Pi=0 \\
& \Leftrightarrow E_{2}\left(I-\Pi_{2}\right) \Pi_{1}=0
\end{aligned}
$$

Remarks 2.
a) Index $1 \Leftrightarrow E_{p}\left(I-\Pi_{p}\right)=0 \forall p$
b) Consistency spaces equal $\Leftrightarrow\left(I-\Pi_{q}\right) \Pi_{p}=0 \forall p, q$

10.3 Stability

Definition 1. $E_{\sigma} \dot{x}=A_{\sigma} x$ is called (asymptotically) stable (for given σ)
$: \Leftrightarrow$

1) all solutions are impulse free
2) $x(t \pm) \rightarrow 0$ as $t \rightarrow \infty$

Question: When is $E_{\sigma} \dot{x}=A_{\sigma} x$ stable $\forall \sigma$?
Attention: Stability of each mode $E_{p} \dot{x}=A_{p} x$ is necessary but not sufficient, ODE-example:

For switched DAEs jumps play also important role:
Examples 1.
a) $E_{1}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], A_{1}=\left[\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right]$

$$
E_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right], A_{1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

\rightarrow jumps destabilize
b) $\left(E_{1}, A_{1}\right)$ as above, $E_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], A_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
non-switched behavior exactly the same as above, but switched behavior now stable:

Proposition 1. $E \dot{x}=A x$ asymptotically stable for regular (E, A)
\Leftrightarrow generalized Lyapunov equation

$$
\begin{equation*}
A^{\top} P E+E^{\top} P A=-Q \tag{*}
\end{equation*}
$$

has solution (P, Q) with $P=P^{\top}>0$ (positiv definite) and $Q=Q^{\top}$ positiv definite on consistency space.
In particular, $E \dot{x}=A x$ asymptotically stable
$\Leftrightarrow \exists$ Lyapunov Function

$$
V(x)=(E x)^{\top} P E x
$$

where P is solution of (*) for some Q.
Note that

$$
\begin{aligned}
\frac{d}{d t} V(x(t)) & =(E x(t))^{\top} P E \dot{x}(t)+(E \dot{x}(t))^{\top} P E x(t) \\
& =x(t)^{\top} E^{\top} P A x(t)+x(t) A^{\top} P E x(t) \\
& =-x(t) Q x(t)<0
\end{aligned}
$$

Theorem 2. $E_{\sigma} \dot{x}=A_{\sigma} x$ is asymptotically stable $\forall \sigma$ if

1) $E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0 \forall p, q$ (impulse freeness)
2) \exists Lyapunov Function $V_{p}(x)=\left(E_{p} x\right)^{\top} P_{p} E_{p} x \forall p$ (each mode asymptotically stable)
3) $\forall p, q \in\{1, \ldots, N\} \forall x \in \mathrm{im}_{p}$:

$$
\begin{equation*}
V_{q}\left(\Pi_{q} x\right) \leq V_{p}(x) \tag{**}
\end{equation*}
$$

Note that for all $x \in \Pi_{p} \cap \Pi_{q}$:

$$
V_{q}(x)=V_{q}\left(\Pi_{q} x\right) \leq V_{p}(x)=V_{p}\left(\Pi_{p} x\right) \leq V_{q}(x)
$$

$\Rightarrow V_{q}(x)=V_{p}(x)$ on intersection of consistency space
$\Rightarrow(* *)$ generalizes the well-known "common Lyapunov function" condition of switched ODEs.
Remark 3. Result also holds for nonlinear switched DAEs:

$$
E_{\sigma}(x) \dot{x}=f_{\sigma}(x) .
$$

